检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:靳佳蕊 孙晓荣[1,2] 郑冬钰 刘翠玲[1,2] 张善哲 赵沐天 JIN Jia-Rui;SUN Xiao-Rong;ZHENG Dong-Yu;LIU Cui-Ling;ZHANG Shan-Zhe;ZHAO Mu-Tian(School of Artificial Intelligence,Beijing Technology and Business University,Beijing 100048,China;Beijing Key Laboratory of Big Data Technology for Food Safety,Beijing Technology and Business University,Beijing 100048,China)
机构地区:[1]北京工商大学人工智能学院,北京100048 [2]北京工商大学,食品安全大数据技术北京市重点实验室,北京100048
出 处:《食品安全质量检测学报》2023年第5期45-52,共8页Journal of Food Safety and Quality
基 金:北京市自然科学基金资助项目(4222043);2021年教育部高教司产学合作协同育人项目(202102341023);2022年北京工商大学研究生教育教学改革专项(19008022056)。
摘 要:目的 利用中红外光谱技术实现对煎炸油极性组分的快速检测。方法 根据光谱-理化值共生距离分类法对煎炸油中红外光谱数据进行样本划分,从而得到校正集和预测集。采用卷积(Savitzy-Golay,S-G)平滑+一阶导数预处理手段,利用竞争自适应重加权算法(competitive adaptive reweighted sampling, CARS)进行特征提取,建立煎炸油极性组分含量的偏最小二乘回归(partial least squares regression, PLSR)预测模型,并利用BP神经网络算法对模型进行优化。结果 BP神经网络算法建立的模型校正集决定系数为0.9032,校正集均方根误差(root means quare error of calibration,RMSEC)为0.1264,预测集决定系数为0.8569,预测集均方根误差(root mean square error of prediction, RMSEP)为0.0625。经BP神经网络算法优化后,均方根误差明显减小,提高了预测模型的准确性。结论 结合BP神经网络算法的中红外光谱技术是一种检测煎炸油极性组分的有效方法,为食用油品质的快速检测提供理论指导和技术支撑。Objective To rapidly detect polar components in frying oil by mid-infrared spectroscopy.Methods According to the sample set partitioning based on joint X-Y distance, the samples of infrared spectral data in frying oil were divided, and the correction set and prediction set were obtained. Moreover, competitive adaptive reweighted sampling(CARS) algorithm was used for feature extraction after Savitzy-Golay(S-G)smoothing+1stderivative preprocessing. The prediction model of polar components had been established by partial least squares regression(PLSR) methods, which was optimized by BP neural network algorithm. Results The model was established by BP neural network algorithm, the coefficient of determination and root mean square error of calibration(RMSEC) were 0.9032 and 0.1264, respectively. The coefficient of determination and root mean square error of prediction(RMSEP) were 0.8569 and 0.0625, respectively. After optimized by BP neural network algorithm, the root-mean-square error decreased obviously, which improved the accuracy of the prediction model.Conclusion Mid-infrared spectroscopy combined with BP neural network algorithm is an effective method to detect polar components of frying oil, which provides theoretical guidance and technical support for rapid quality detection of edible oil.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7