基于改进YOLOv5的钢材表面缺陷检测  被引量:12

Surface defect detection of steel based on improved Yolov5

在线阅读下载全文

作  者:吴敌 李明辉[1] 马文凯 李睿童 李艳[2] WU Di;LI Ming-hui;MA Wen-kai;LI Rui-tong;LI Yan(College of Mechanical and Electrical Engineering,Shaanxi University of Science&Technology,Xi′an 710021,China;School of Electrical and Control Engineering,Shaanxi University of Science&Technology,Xi′an 710021,China)

机构地区:[1]陕西科技大学机电工程学院,陕西西安710021 [2]陕西科技大学电气与控制工程学院,陕西西安710021

出  处:《陕西科技大学学报》2023年第2期162-169,共8页Journal of Shaanxi University of Science & Technology

基  金:陕西省重点研发计划项目(S2023-YF-YBGY-0697);陕西省咸阳市重点研发计划项目(L2022ZDYFSF047,S2021ZDYF-GY-0244)。

摘  要:针对当前钢材表面缺陷种类多、形态复杂等原因导致的检测精度低的问题,本文提出了一种基于改进YOLOv5目标检测网络的缺陷检测方法.首先,对于在检测中小目标缺陷易被漏检、错检的问题,增加了小目标检测层;其次,对于缺陷图像表现的背景复杂,且部分缺陷交叉、重叠等问题,引入了Transformer encoder block模块和Convolutional block attention model(CBAM)模块,使网络能更加有效地对抗复杂背景信息,专注于目标对象的检测;最后,使用NEU-DET数据集对该改进模型进行了实验.结果表明,相较于原YOLOv5模型,该方法在缺陷检测方面的精度提升了6.5%;相较于Faster-RCNN模型,其精度提高了约10%.因此,该方法在钢材表面缺陷检测上,具有较好的检测精度和效率.In order to solve the problem of low detection accuracy caused by the variety and complexity of the surface defects of steel,we proposed a defect detection method based on improved YOLOV5 object detection network.Firstly,a small target detection layer is added to the problem that small defects are often to be missed and misdetected.Then,the Transformer encoder block module and the Convolutional block attention model(CBAM)are used to deal with the complex background of the defect image,which makes the network more effective against complex background information and more focus on object detection.Finally,the improved model is tested on NEU-DET datasets.The results show that the precision of the proposed method is 6.5%higher than that of the original YOLOv5 model and about 10%higher than that of the Faster-RCNN model.The experimental results show that the method has good accuracy and efficiency in steel surface defect detection.

关 键 词:目标检测 钢材表面缺陷 YOLOv5 注意力机制 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象