检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张江伟 Zhang Jiangwei(College of Electrical Engineering,Sichuan University,Chengdu 610065,Sichuan,China)
出 处:《计算机应用与软件》2023年第3期142-148,共7页Computer Applications and Software
摘 要:针对多无人机(UAV)编队重构最优控制问题,提出一种基于粒子群算法(PSO)和控制参数化的方法。综合考虑无人机飞行动力学模型和编队重构的终端状态等式约束、安全防撞距离与通信保障距离的连续状态不等式约束。使用一种改进的粒子群算法求出该编队重构问题的最优控制输入;利用控制参数化方法将编队重构问题转化为一个最优参数选择问题,同时应用约束转录方法结合局部光滑技术处理连续状态不等式约束,并在改进粒子群算法获得的最优解下寻找更加精确的最优解。通过对比仿真,验证了所提重构方法的有效性。For the optimal control problem of multi-UAV formation reconfiguration,a method based on particle swarm optimization(PSO)and control parameterization is proposed.The kinematic model for UAVs,the terminal state equality constraints of formation reconfiguration,and the continuous state inequality constrains of the safe collision avoidance distance and the communication guarantee distance were comprehensively considered.An improved PSO was used to find the optimal control input for the formation reconfiguration problem.The formation reconfiguration problem was transformed into an optimal parameter selection problem using the control parameterization method.The constraint transcription method with local smoothing technology was used to deal with continuous state inequality constraints and find more accurate optimal solution under the optimal control solution obtained by the improved PSO.Through the comparative simulation,the effectiveness of the proposed method was verified.
关 键 词:多无人机 编队重构 改进粒子群算法 控制参数化方法
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.118.82.212