检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李浩然[1] 张红梅[1] Li Haoran;Zhang Hongmei(School of Information and Communication,Guilin University of Electronic Technology,Guilin 541004,Guangxi,China)
机构地区:[1]桂林电子科技大学信息与通信学院,广西桂林541004
出 处:《计算机应用与软件》2023年第3期281-286,共6页Computer Applications and Software
基 金:国家自然科学基金项目(61461010);“认知无线电与信息处理”省部共建教育部重点实验室基金项目(CRKL170103,CRKL170104);广西教育大数据与网络安全协同创新中心项目;广西自然科学基金重点项目(2020GXNSFDA238001)。
摘 要:为了解决深度图神经网络中存在的过平滑问题,提出一种基于子图划分的多尺度节点分类方法。该方法以Graph-Inception网络结构为核心,采用一种基于子图划分的数据预处理方法,通过改变图中的网络结构,优化特征聚集方式,有效地抑制了冗余搜索带来的过平滑问题;利用不同尺寸卷积核的组合来提取目标节点多尺度邻域的特征信息,以实现对图神经网络深度扩展的等效,一定程度上抑制了深层网络结构带来的过平滑问题。实验结果表明,该方法能够有效地抑制图神经网络中出现的过平滑问题,在基准数据集PPI、Reddit和Amazon上的分类准确率都得到了不同程度的提高。In order to solve the problem of over-smooth in the deep graph neural networks,a multi-scale node classification method based on subgraph partition is proposed.Taking the Graph-Inception as the core,this method used a subgraph partition as a data preprocess method.The network structure in the graph was changed,the method of feature aggregation was optimized,which effectively suppressed the over-smooth caused by redundant features searching.The neighborhood feature information of the target node at multi-scale was extracted through the combination of convolution kernels of different sizes,so as to achieve the equivalent of the depth expansion of the graph neural networks.To a certain extent,the over-smooth problem caused by the deep network structure was suppressed.Experimental results show that the proposed method can effectively suppress the over-smooth problem in graph neural networks,and improve the classification accuracy on the benchmark datasets PPI,Reddit and Amazon to vary degrees.
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.133.149.165