基于人机协同的FU-Net网络的CT影像肝脏自动分割  

Automatic Liver Segmentation of CT Images Based on FU-Net Network of Human-Computer Cooperation

在线阅读下载全文

作  者:王佳琪 张广渊[1] 李克峰[1] WANG Jiaqi;ZHANG Guangyuan;LI Kefeng(Shandong Jiaotong University,Jinan 250357,China)

机构地区:[1]山东交通学院,山东济南250357

出  处:《现代信息科技》2023年第6期54-56,60,共4页Modern Information Technology

摘  要:现有的医学图像器官分割方法不能很好地依肝脏形状、位置及大小的变化而进行适当的分割,当肝脏形态变化明显时,不能准确地将肝脏分割出来。鉴于此,文章在传统U-Net网络中加入了全局注意力模块,通过通道注意力和自我注意力增强了对肝脏的特征提取;并在自动分割的基础上进行了人机协同操作,对分割不好的部分增加数据量,有效提高了分割准确率。该模型在MIOU和MPA指标上分别达到了86.71%、92.58%。The existing organ segmentation methods in medical images can not segment properly according to the changes of liver shape,position and size.When the liver shape changes obviously,the liver can not be accurately segmented.In view of this,this paper adds a global attention module to the traditional U-Net network,which enhances the feature extraction of liver through channel attention and self attention.On the basis of automatic segmentation,human-computer cooperation is carried out to increase the amount of data for the bad part of segmentation and effectively improve the accuracy of segmentation.The model reaches 86.71%and 92.58%respectively in MIOU and MPA indicators.

关 键 词:医学影像 人机协同 器官分割 U-Net网络 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象