检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:尹忠勋 刘松[1,2,3] 佟新鑫[1,2,3] YIN Zhong-xun;LIU Song;TONG Xin-xin(Key Laboratory of Opto-Electronic Information Processing,Chinese Academy of Sciences,Shenyang 110169,China;Shenyang Institute of Automation,Chinese Academy of Sciences,Shenyang 110169,China;Institutes for Robotics and Intelligent Manufacturing,Chinese Academy of Sciences,Shenyang 110169,China)
机构地区:[1]中国科学院光电信息处理重点实验室,辽宁沈阳110169 [2]中国科学院沈阳自动化研究所,辽宁沈阳110169 [3]中国科学院机器人与智能制造创新研究院,辽宁沈阳110169
出 处:《激光与红外》2023年第3期449-456,共8页Laser & Infrared
基 金:光电信息技术研究室基金项目(No.E055040803)资助。
摘 要:在红外图像去噪任务中,由于真实的红外噪声图像难以大量获取,而使深度学习算法高度依赖于人工合成噪声,无法很好地去除真实的红外噪声。本文提出一种基于域自适应的红外图像去噪算法,包括一个图像转换模块和两个图像去噪模块。首先利用图像转换模块将合成红外噪声图像和真实红外噪声图像相互转换,然后将转换后的图像和原图像作为去噪模块的训练数据,采用一致性损失函数使两个图像去噪模块产生一致的结果,最后将训练后的去噪网络框架用于红外图像去噪任务。实验表明,本文提出的算法与BM3D、DnCNN和ADNet算法相比在合成红外噪声数据集上有更高的指标数值和更好的视觉效果,在真实红外噪声数据集上有同样优秀的去噪效果。证明了该算法具有良好的泛化能力,能够在真实噪声下恢复清晰的红外图像。In the infrared image denoising task,the deep learning algorithms are highly dependent on synthetic noise and cannot remove the real infrared noise well since the real infrared noise images are difficult to obtain in large batches.In this paper,a network framework for infrared image denoising based on domain adaptation is proposed,which consists of an image translation module and two image denoising modules.Firstly,the image translation module is used to convert the synthetic infrared noise image to the real infrared noise image.Then,the converted image and the original image are used as the training data for the denoising module and the consistency loss function is used to make the two image denoising modules produce consistent results.Finally,the trained network framework is used for infrared image denoising task.The experiments show that the proposed algorithm has higher quantitative metrics and better visual quality on synthetic infrared noise datasets compared with BM3D,DnCNN and ADNet,and has the same excellent denoising effect on real infrared noise datasets.It is demonstrated that the algorithm has good generalization capabilities and is able to recover clear infrared images under real noise.
关 键 词:红外图像去噪 域自适应 CNN 多尺度 特征连接
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30