面向自闭症辅助诊断的深度对比模糊神经网络  

Deep Contrastive Fuzzy Neural Network for Aided Diagnosis of Autism

在线阅读下载全文

作  者:陆昭吾 王骏 施俊[1] LU Zhaowu;WANG Jun;SHI Jun(School of Communication and Information Engineering,Shanghai University,Shanghai 200444,China)

机构地区:[1]上海大学通信与信息工程学院,上海200444

出  处:《计算机工程》2023年第4期263-271,共9页Computer Engineering

基  金:上海市自然科学基金(20ZR1419900)。

摘  要:静息态功能磁共振成像(rs-fMRI)可有效反映大脑活动状况,然而rs-fMRI数据的高随机性和自闭症谱系障碍(ASD)内在的高异质性给ASD计算机辅助诊断带来了不确定性。提出一种基于对比损失的Takagi-Sugeno-Kang(TSK)深度模糊神经网络CL-DeepTSK,结合多输出TSK(MO-TSK)模糊系统与多层感知机(MLP)有效缓解数据不确定性对模型的影响,提升TSK模糊系统的表达能力,并使模型更具可解释性。使用对比损失目标学习准则对MO-TSK与MLP进行联合优化,提高训练样本缺乏时的模型泛化性能。在ABIDE数据集上的实验结果表明,CLDeepTSK的平均正确率和AUC指标分别达到70.0%和0.773,同时获得了30个最具鉴别性的功能连接。上述实验结果证明了CL-DeepTSK能够有效地进行自闭症辅助诊断,并且具有较高的可解释性。Resting-state functional Magnetic Resonance Imaging(rs-fMRI)can effectively reflect brain activity.However,the high randomness in rs-fMRI data and high heterogeneity in autism cases cause high uncertainty in the diagnosis of Autism Spectrum Disorder(ASD).Hence,this study integrates a fuzzy system with a deep neural network and proposes a Takagi-Sugeno-Kang(TSK)deep fuzzy neural network based on Comparative Loss(CL),which is abbreviated as CL-DeepTSK.CL-DeepTSK combines the Multi-Output TSK(MO-TSK)fuzzy system with a Multilayer Perceptron(MLP),which effectively reduces the effect of data uncertainty on the model,improves the expression ability of the TSK fuzzy system,and renders the model interpretable.Additionally,MO-TSK and MLP are jointly optimized using a novel CL objective-learning criterion,which improves the generalization performance of the model when the training samples are insufficient.For the Autism Brain Imaging Data Exchange(ABIDE)dataset,the accuracy and Area Under Curve(AUC)of the CL-DeepTSK are 70.0%and 0.77,respectively,and the 30 most discriminative functional connections are obtained.Experimental results show that the proposed CL-DeepTSK model can be effective and interpretable for the auxiliary diagnosis of ASD.

关 键 词:自闭症谱系障碍 静息态功能性磁共振成像 Takagi-Sugeno-Kang模糊系统 对比损失 计算机辅助诊断 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象