检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:段智峰 谢丽蓉[1] 崔传世 殷秀丽 包洪印 DUAN Zhifeng;XIE Lirong;CUI Chuanshi;YIN Xiuli;BAO Hongyin(Wind Storage Division of State Key Laboratory of Power System and Generation Equipment Control and Simulation,Xinjiang University,Urumqi 830047,China;CSIC Haiwei(Xinjiang)New Energy Co.,Ltd.,Urumqi 830002,China)
机构地区:[1]新疆大学电力系统及发电设备控制和仿真国家重点实验室风光储分室,乌鲁木齐830047 [2]中船重工海为(新疆)新能源有限公司,乌鲁木齐830002
出 处:《轴承》2023年第4期80-86,共7页Bearing
基 金:国家自然科学基金资助项目(62163034)。
摘 要:针对传统轴承故障诊断方法依赖人工进行特征提取时效率低且难以处理大规模数据等问题,将卷积长短时深度神经网络(CLDNN)引入轴承故障诊断并进行改进,提出一种基于注意力机制的卷积门控深度神经网络(Attention-CGDNN)的滚动轴承故障诊断模型,该模型将卷积神经网络、门控循环单元和全连接神经网络有效融合以实现滚动轴承信号特征提取,并加入注意力机制使网络更专注于重要特征,最后通过Softmax分类算法实现滚动轴承故障诊断。采用CWRU和XJTY-SY轴承数据集的验证结果表明,Attention-CGDNN模型具有训练参数少,训练难度小,收敛速度快和识别精度高的特点,特征提取能力更强,故障诊断性能优于传统模型。Aimed at the problems that traditional fault diagnosis methods for bearings rely on manual feature extraction,such as low extraction efficiency and difficulty in handling large-scale data,the convolutional neural-long short-term memory-deep neural networks(CLDNN)is introduced into fault diagnosis of bearings and the improvement is undertaken,a fault diagnosis model for rolling bearings is proposed based on attention-convolutional gate recurrent unit depth neural networks(Attention-CGDNN).In this model,convolutional neural network,gated cycle unit and fully connected neural network are effectively integrated to achieve feature extraction of rolling bearing signal,and attention mechanism is added to make the network more focused on important features.Finally,the fault diagnosis for rolling bearings is realized by SoftMax classification algorithm.The verification results using CWRU and XJTU-SY bearing datasets show that the Attention-CGDNN model has the characteristics of few training parameters,small training difficulty,fast convergence speed and high recognition accuracy,stronger feature extraction ability,and better fault diagnosis performance than traditional models.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.137.136.226