检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张志壮 高文华[1] 石慧[1] 董增寿[1] ZHANG Zhi-zhuang;GAO Wen-hua;SHI Hui;DONG Zeng-shou(School of Electronic and Information Engineering,Taiyuan University of Science and Technology,Taiyuan 030024,China)
机构地区:[1]太原科技大学电子信息工程学院,太原030024
出 处:《太原科技大学学报》2023年第2期91-96,共6页Journal of Taiyuan University of Science and Technology
基 金:国家自然科学基金青年科学基金(61703297);山西省重点研发计划(201903D321012;201903D121023);山西省自然科学基金(201801D121166;201901D111264)。
摘 要:针对密度峰值聚类算法中,样本局部密度截断距离需主观选择和样本分配策略的误差扩散问题,提出自适应截断距离和构造流形距离优化样本分配的改进型密度峰值聚类算法。该算法首先使用样本K近邻自适应的选取各点的截断距离,即在样本密度大的点,选用大截断距离,准确选取类簇中心,在样本密度小的点,选用小截断距离,判别离群点。其次对于剩余样本通过样本的连接路径构造流形距离,优化样本分配策略。最后选取人工数据集进行聚类分析算法实验,与传统的密度峰值聚类算法进行实验对比,验证所提改进算法对聚类中心选取和样本分配的准确性。Aiming at the shortcomings of the subjective selection of the cutoff distance and the sample allocation strategy in the sample local density of the density peaks fast search clustering algorithm,an improved density peaks clustering algorithm which is adaptive to the cutoff distance and Manifold distance optimization is proposed.The algorithm uses the sample K nearest neighbor adaptive selection cutoff distance.In the place where the sample density is large,the large cutoff distance is selected to accurately select the cluster center.For the remaining samples,an optimized sample allocation strategy of manifold distance was adopted.Artificial data sets were selected for clustering analysis in the algorithm verification experiment,and the experiment was compared with the traditional peak density clustering algorithm to verify the accuracy of the improved algorithm in clustering center selection and sample allocation.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171