检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王永铎[1] 李孟高 WANG Yong-duo;LI Meng-gao(School of Science,Lanzhou University of Technology,Lanzhou 730050,Gansu,China)
出 处:《西北师范大学学报(自然科学版)》2023年第2期18-22,26,共6页Journal of Northwest Normal University(Natural Science)
基 金:国家自然科学基金资助项目(11861043)。
摘 要:作为类乘法模和类余乘法模的真推广,引入了类乘法半模和类余乘法半模的概念.设S是交换半环,M是S-半模.若对M的任意非零子半模N,有Ann_(S)(M)Ann_(S)(M/N),则称M是类乘法S-半模;若对任意真subtractive子半模N,有Ann_(S)(M)Ann_(S)(N),则称M是类余乘法S-半模.讨论了类乘法半模与类余乘法半模的性质;证明了M是次S-半模当且仅当对M的任意真subtractive子半模N,Ann_(S)(M/N)=Ann_(S)(M)当且仅当P=Ann_(S)(M)是S的素理想且M是可除S/P-半模;证明了类乘法半模是semi-hopfian半模且类余乘法半模是semi-cohopfian半模.As proper generalizations of multiplication-like modules and comultiplication-like modules,the concepts of multiplication-like semimodules and comultiplication-like semimodules are introduced in this paper.Let S be a commutative semiring and M be an S-semimodule.M is said to be a multiplication-like S-semimodule if Ann _(S)(M)Ann _(S)(M/N)for each nonzero subsemimodule N;M is said to be a comultiplication-like S-semimodule if Ann _(S)(M)Ann _(S)(N)for each proper subtractive subsemimodule N.Some properties of multiplication-like semimodules and comultiplication-like semimodules are discussed.It is proved that M is a second S-semimodule if and only if Ann _(S)(M/N)=Ann _(S)(M)for each proper subtractive subsemimodule N of M if and only if P=Ann _(S)(M)is a prime ideal of S and M is a divisible S/P-semimodule.Furthermore,it is proved that multiplication-like semimodules are semi-hopfian semimodules and comultiplication-like semimodules are semi-cohopfian semimodules.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7