检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黄胤铭 HUANG Yinming(School of Computer Science,South China Normal University,Guangdong 510631,China)
出 处:《集成电路应用》2023年第3期270-273,共4页Application of IC
摘 要:阐述神经网络为ResNet-152以及VGG16,采用迁移学习的方式,将Stanford-car196数据集按照80:20分为训练集和测试集,进行训练,最终得到两种神经网络的训练模型。ResNet152和VGG16_dropout的准确度分别为89.80%以及77.54%,使用dropout&Batch-Normalize优化后的VGG16,性能由77.54%增加至82.26%。This paper describes that the neural networks are ResNet-152 and VGG16.The Stanford car 196 dataset is divided into a training set and a test set according to 80:20 by using the transfer learning method.After training,the training models of the two neural networks are finally obtained.The accuracy of ResNet152 and VGG16_dropout was 89.80%and 77.54%,respectively.The performance of VGG16 optimized using dropout&Batch Normalize increased from 77.54%to 82.26%.
关 键 词:细粒度分类 深度学习 车辆分类 DROPOUT Batch-Normalize
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.188.91.70