检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵有港 张宏[1] 徐刚 许允款 曾晶 ZHAO You-gang;ZHANG Hong;XU Gang;XU Yun-kuan;ZENG Jing(School of Mechanical Engineering,Taiyuan University of Science and Technology,Taiyuan 030024,China;Computer Vision Lab,Ningbo Institute of Materials Technology and Engineering,Chinese Academy of Sciences,Ningbo 315000,China)
机构地区:[1]太原科技大学机械工程学院,山西太原030024 [2]中国科学院宁波材料技术与工程研究所计算机视觉实验室,浙江宁波315000
出 处:《计算机工程与设计》2023年第4期1242-1249,共8页Computer Engineering and Design
基 金:宁波市科技创新2025重大专项基金项目(2020Z013)。
摘 要:针对机器人工业抓取场景中,堆叠的工件相互遮挡,难以识别的问题,提出一种基于聚类网格法的自适应线性推动策略AC-Grid。融合二维图像与点云高度渲染信息,根据抓取场景内工件的散乱堆叠情况分析出可靠的几何特征,为机器人优化出一条合理有效的工件推动路线。在V-REP仿真环境中制作80组“PushTD”系列的模拟场景数据集,对比实验结果表明,AC-Grid推动策略在仿真场景下最高能使平均目标匹配识别度提高至39.6%,在实际场景中能达到16.4%,在不同场景中均能起到显著分离和目标识别度提升的作用。In the robotic industrial grasping scene,the stacked work-pieces obscure each other,making it difficult to identify.To solve the problem,an adaptive linear driving strategy AC-Grid based on the clustering grid method was demonstrated.Two-dimensional images and point cloud height rendering information were combined.Reliable geometric features were analyzed based on the scattered stacking of work-pieces in the captured scene.Therefore,a reasonable and effective work-piece pushing route for the robot was optimized.In the V-REP simulation environment,80 sets of simulation scene datasets of the“PushTD”series were produced.Results of comparative experiments show that the AC-Grid promotion strategy can increase the average target matching recognition degree to 39.6%in the simulation scene,which can reach 16.4%in real situation.The simulation results show the proposed method possess promotion in separation and target recognition in different scenarios.
关 键 词:机器人抓取 聚类网格 推动策略 图像处理 目标分离 目标识别 模拟场景数据集
分 类 号:TP242.6[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222