基于异常检测与注意力机制的COVID-19识别模型  

COVID-19 Recognition Model Based on Anomaly Detection and Attention Mechanism

在线阅读下载全文

作  者:杜智华[1] 杨文凯 DU Zhi-hua;YANG Wen-kai(College of Computer and Software Engineering,Shenzhen University,Shenzhen Guangdong518000,China)

机构地区:[1]深圳大学计算机与软件学院,广东深圳518000

出  处:《计算机仿真》2023年第3期326-332,337,共8页Computer Simulation

基  金:国家自然科学基金项目(U1713212,61572330,61836005,61702341);深圳市科技计划项目(JCYJ20170302143118519,GGFW2018021118145859,JSGG20180507182904693)。

摘  要:旨在开发一种新的深度学习模型,以便从大量的胸部X光片中快速、可靠地筛查新冠肺炎患者。主要胸部X光片影像特征提出了一种融合异常检测技术以及Attention机制的COVID-19识别模型(Dev-SEDenseNet、Dev-SEResNet)。其中,Attention机制通过对CNN网络提取的特征分配注意力权重,能够在一定程度上排除无关信息的干扰。其次,将深度异常检测技术与卷积神经网络结合,能够更好地帮助模型学习异常数据特征。上述两个模型相较于原始DenseNet、ResNet算法性能指标有了较大提升,可以有效提高新冠肺炎预诊率。This article aims to develop a new deep learning model to quickly and reliably screen patients with new coronary pneumonia from a lot of chest X-rays.Mainly based on the convolutional neural network algorithm to extract the image features of the chest X-ray film,and to solve the problem of insufficient correlation analysis and lack of interpretability in the CNN algorithm in solving the problem of chest X-ray film disease diagnosis.Dev-SEDenseNet and Dev-SEResNet model consist of anomaly detection technology and Attention mechanism.Among them,the Attention mechanism can eliminate the interference of irrelevant information to a certain extent by assigning attention weights to the features extracted by the CNN network.Secondly,the combination of deep anomaly detection technology and convolutional neural network can better help the model learn the characteristics of abnormal data.In order to evaluate the model,196 chest X-rays of patients with confirmed new coronary pneumonia were collected from the Github database,and 1457 chest X-rays of patients with other lung diseases were collected from the public data set Chest X-ray14.Compared with the original DenseNet and ResNet algorithm,the performance index of models have been greatly improved,which can effectively improve the pre-diagnosis rate of new coronary pneumonia.

关 键 词:新冠肺炎 深度学习 异常检测 注意力机制 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象