检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]沈阳理工大学自动化与电气工程学院,辽宁沈阳110159
出 处:《工业控制计算机》2023年第4期107-108,111,共3页Industrial Control Computer
摘 要:针对三维设备获取的点云数据存在大量噪声和数据处理中局部细节部分丢失等问题,提出一种基于PCPNet改进的深度学习网络来有效去噪。该网络利用多尺度特征聚合模块自适应的聚合了不同尺度点云块的局部细节特征和整体特征,并用LSTM来聚合不同尺度的点云块特征,这样能够更好地保留局部特征,估算更为精确的局部细节法线。多次试验表明,该方法相较于传统方法和PCPNet等深度学习方法在性能上更好,对不同噪声具有一定的鲁棒性,同时又能够对局部边缘信息进行有效保留。Aiming at the problems of a lot of noise and loss of local details in the point cloud data acquired by 3D equipment,an improved deep learning network based on PCPNet is proposed to effectively denoise in this paper.The network uses the multi-scale feature aggregation module to adaptively aggregate the local detail features and overall features of point cloud blocks of different scales,and uses LSTM to aggregate the features of point cloud blocks of different scales,which can better retain local features and estimate more accurate local detail normals.Multiple experiments show that this method has better performance than traditional methods and deep learning methods such as PCPNet,and has certain robustness to different noises while effectively retaining local edge information.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.43