检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:胡巧 刘贤宁[1] HU Qiao;LIU Xianning(College of Mathematics and Statistic,Southwest University,Chongqing 400715,China)
出 处:《西南师范大学学报(自然科学版)》2023年第4期67-74,共8页Journal of Southwest China Normal University(Natural Science Edition)
基 金:国家自然科学基金项目(12071382)。
摘 要:建立并研究了一类具有一般发生率和潜伏期时滞的水痘传播动力学模型.首先,证明了模型解的非负性和有界性.其次,给出了模型的基本再生数R0,并证明了模型正平衡点的存在唯一性.再次,通过构造Lyapunov泛函,证明了无病平衡点及地方病平衡点的全局稳定性.最后通过数值模拟验证了:当R0<1时,无病平衡点E0全局渐近稳定;当R0>1时,地方病平衡点E*全局渐近稳定.In this paper,a kind of transmission dynamics model of varicella with general incidence and latency time delay is established and studied.Firstly,the nonnegativity and boundedness of the model solution are proved.Secondly,the basic reproduction number R 0 of the model is given,and the existence and uniqueness of the positive equilibrium of the model are proved.Thirdly,the global stability of disease-free equilibrium and endemic equilibrium are proved by constructing Lyapunov functionals.Finally,numerical simulations verify that the disease-free equilibrium E 0 is globally asymptotically stable when R 0<1 and the endemic equilibrium E*is globally asymptotically stable when R 0>1.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145