检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李敏 慕创创[1,2] 张建运 李刚 LI Min;MU Chuangchuang;ZHANG Jianyun;LI Gang(Department of Oral and Maxillofacial Radiology,Peking University Hospital of Stomatology,Peking University School of Stomatology,Beijing 100081,China;Beijing Key Laboratory of Digital Stomatology,National Engineering Research Center of Oral Biomaterials and Digital Medical Devices,National Clinical Research Center for Oral Diseases,Beijing 100081,China;Department of Medical Pathology,Peking University Hospital of Stomatology,Peking University School of Stomatology,Beijing 100081,China)
机构地区:[1]北京大学口腔医学院口腔医院医学影像科,北京100081 [2]国家口腔疾病临床医学研究中心、口腔生物材料和数字诊疗装备国家工程研究中心、口腔数字医学北京市重点实验室,北京100081 [3]北京大学口腔医学院口腔医院医学病理科,北京100081
出 处:《中国医学科学院学报》2023年第2期273-279,共7页Acta Academiae Medicinae Sinicae
基 金:北京大学百度基金(2020037)。
摘 要:目的通过应用不同卷积神经网络模型对成釉细胞瘤及牙源性角化囊肿进行鉴别诊断。方法回顾性收集1000张成釉细胞瘤和牙源性角化囊肿患者的数字曲面体层片,选用ResNet(18、50、101)、VGG(16、19)、EfficientNet(b1、b3、b5)深度学习模型,对训练集中的800张曲面体层片经五折交叉验证的方法训练后对测试集中的200张曲面体层片进行鉴别诊断。同时,7名口腔放射专业医生对这200张曲面体层片进行诊断,并将二者的诊断结果进行比较。结果卷积神经网络模型的诊断准确率为82.50%~87.50%,其中EfficientNet b1准确率最高,为87.50%,各卷积神经网络模型训练集和测试集本身之间比较,准确率差异无统计学意义(P_(训练集)=0.998,P_(测试集)=0.905)。7名口腔放射专业医生(2名高年资医生、5名低年资医生)平均诊断准确率为(70.30±5.48)%,且不同年资医生之间平均诊断准确率差异无统计学意义(P=0.883)。深度学习卷积神经网络模型的诊断准确率显著高于口腔放射专业医生的诊断准确率(P<0.001)。结论基于曲面体层片的深度学习卷积神经网络能够对成釉细胞瘤和牙源性角化囊肿做出较为准确的鉴别诊断。Objective To evaluate the accuracy of different convolutional neural networks(CNN),representative deep learning models,in the differential diagnosis of ameloblastoma and odontogenic keratocyst,and subsequently compare the diagnosis results between models and oral radiologists.Methods A total of 1000 digital panoramic radiographs were retrospectively collected from the patients with ameloblastoma(500 radiographs)or odontogenic keratocyst(500 radiographs)in the Department of Oral and Maxillofacial Radiology,Peking University School of Stomatology.Eight CNN including ResNet(18,50,101),VGG(16,19),and EfficientNet(b1,b3,b5)were selected to distinguish ameloblastoma from odontogenic keratocyst.Transfer learning was employed to train 800 panoramic radiographs in the training set through 5-fold cross validation,and 200 panoramic radiographs in the test set were used for differential diagnosis.Chi square test was performed for comparing the performance among different CNN.Furthermore,7 oral radiologists(including 2 seniors and 5 juniors)made a diagnosis on the 200 panoramic radiographs in the test set,and the diagnosis results were compared between CNN and oral radiologists.Results The eight neural network models showed the diagnostic accuracy ranging from 82.50%to 87.50%,of which EfficientNet b1 had the highest accuracy of 87.50%.There was no significant difference in the diagnostic accuracy among the CNN models(P=0.998,P=0.905).The average diagnostic accuracy of oral radiologists was(70.30±5.48)%,and there was no statistical difference in the accuracy between senior and junior oral radiologists(P=0.883).The diagnostic accuracy of CNN models was higher than that of oral radiologists(P<0.001).Conclusion Deep learning CNN can realize accurate differential diagnosis between ameloblastoma and odontogenic keratocyst with panoramic radiographs,with higher diagnostic accuracy than oral radiologists.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.140.198.85