检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:岳中文[1] 闫逸飞 王煦[1] 岳小磊 孙思晋 李杨[1,2] 胡少银 甘林堂 YUE Zhong-wen;YAN Yi-fei;WANG Xu;YUE Xiao-lei;SUN Si-jin;LI Yang;HU Shao-yin;GAN Lin-tang(School of Mechanics&Civil Engineering,China University of Mining&Technology-Beijing,Beijing 100083,China;Jiangxi Lanxiang Heavy Industry Co.,Ltd.,Pingxiang 337009,China;Huainan Mining(Group)Co.,Ltd.,Coal Branch,Huainan 232082,China)
机构地区:[1]中国矿业大学(北京)力学与建筑工程学院,北京100083 [2]江西蓝翔重工有限公司,萍乡337009 [3]淮南矿业(集团)有限责任公司煤业分公司,淮南232082
出 处:《科学技术与工程》2023年第10期4044-4057,共14页Science Technology and Engineering
基 金:国家重点研发计划(2021YFC2902103);国家自然科学基金面上项目(51974318);中国高校产学研创新基金(2021BCE02001)。
摘 要:机器学习算法是岩性识别领域重点研究内容之一。与传统岩性识别方法相比,通过监测随钻参数变化进行岩性识别,具有高精度、多信息、集成化、智能化的优点。近年来,随着岩性识别技术不断发展,机器学习算法在岩性识别领域的研究和应用日益广泛。利用机器学习算法分析随钻数据,能够提高岩性识别结果的准确性,更高效地识别地层的岩性和构造。为了厘清岩性识别机器学习算法的发展现状,发掘其在岩性识别技术领域中的技术难题,综述了岩性识别机器学习算法的研究进展。首先,简要介绍了机器学习的概念与发展历程;其次,分类阐述能够用于岩性识别领域的机器学习算法;再次,总结了岩性识别领域各类常用机器学习算法的应用现状,比较了各类算法在岩性识别应用中的优缺点;最后,总结了岩性识别算法存在的问题和面临的挑战,并对其下一步发展方向提出了建议,使未来能更加准确高效地利用机器学习算法分析处理随钻数据,实现机器学习算法与岩性识别技术的深度结合。Machine learning algorithm is one of the key research contents in the field of lithology identification.Compared with traditional lithologic identification methods,lithologic identification by monitoring the changes of parameters while drilling has the advantages of high accuracy,multi-information,integration and intelligence.In recent years,with the continuous development of lithology identification technology,the research and application of machine learning algorithms in the field of lithology identification has become increasingly widespread.Using the machine learning algorithm to analyze the parameters while drilling can improve the accuracy of the lithology identification results,and identify the lithology and structure of the formation more efficiently.In order to clarify the current development status of the machine learning algorithm for lithology identification and to discover its technical challenges in the field of lithology identification technology,the research progress of the machine learning algorithm for lithology identification was reviewed.Firstly,the concept and development history of machine learning were briefly introduced.Secondly,the machine learning algorithms that can be used in the field of lithology identification were classified and explained.Thirdly,the application status of various commonly used machine learning algorithms in the field of lithology identification was summarized,and the advantages and disadvantages of various algorithms in the application of lithology identification were compared.Finally,the existing problems and challenges of the lithology identification algorithm are summarized,and suggestions for its next development direction are put forward,so that the machine learning algorithm can be used to analyze and process data while drilling more accurately and efficiently in the future,and the deep combination of machine learning algorithm and lithology identification technology can be realized.
分 类 号:TD166[矿业工程—矿山地质测量]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.135.63.86