检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨慧 施水才[1] YANG Hui;SHI Shui-cai(School of Computer Science,Beijing Information Science and Technology University,Beijing 100101,China)
机构地区:[1]北京信息科技大学计算机学院,北京100101
出 处:《软件导刊》2023年第4期229-244,共16页Software Guide
摘 要:随着互联网、计算机和存储技术飞速发展,数字图像信息日产量呈爆炸式增长。图像检索是计算机视觉领域的热点研究方向,旨在从大规模图像数据库中检索、查询数据视觉或文本相关内容,因此如何从海量数字信息库中快速、准确地检索用户所需内容是图像检索领域亟待解决的问题。图像传统的低层与深度特征是有效描述图像的特征表示,近年来提取图像深度特征受到广泛关注,已在计算机视觉领域图像检索技术中快速发展。为此,通过结合TBIR与CBIR方法的利弊,对近年CBIR技术相关研究进行综述。首先,介绍CBIR任务及评价方法,总结当前应用于图像检索任务的各类经典数据集。然后,根据图像特征提取方法,分别从传统、深度特征方面介绍相关算法,包含了图像的全局、局部特征提取及基于深度网络模型特征提取方法。接下来,归纳跨模态、类别级、实例级等8个类型的检索技术。最后,总结目前图像检索技术中亟待解决的问题,并在此基础上分析该技术未来的研究方向。With the rapid development of Internet,computer and storage technology,the daily output of digital image information is explod⁃ing.Image retrieval is a hot research direction in the field of computer vision,which aims to retrieve and query data vision or text related con⁃tent from large-scale image databases.Therefore,how to quickly and accurately retrieve user required content from massive digital information databases is an urgent problem in the field of image retrieval.The traditional low-level and depth features of images are the feature representa⁃tions that effectively describe images.In recent years,the extraction of image depth features has attracted extensive attention and has devel⁃oped rapidly in image retrieval technology in the field of computer vision.Therefore,by combining the advantages and disadvantages of TBIR and CBIR methods,the related research of CBIR technology in recent years is reviewed.Firstly,CBIR tasks and evaluation methods are intro⁃duced,and various classic datasets currently used in image retrieval tasks are summarized.Then,according to the image feature extraction methods,the relevant algorithms are introduced from the aspects of traditional and depth features,including the global and local feature ex⁃traction of the image and the feature extraction method based on the depth network model.Next,eight types of retrieval techniques,including cross modal,category level and instance level,are summarized.Finally,we summarize the problems that need to be solved in the current im⁃age retrieval technology,and analyze the future research direction of this technology on this basis.
关 键 词:图像检索 CBIR 深度学习 特征提取 卷积神经网络
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7