检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:胡仔豪 HU Zihao(Jingdezhen Ceramic University,Jingdezhen 333403,China)
出 处:《现代信息科技》2023年第7期78-81,共4页Modern Information Technology
基 金:国家自然科学基金(31860312)。
摘 要:启动子的分类已成为一个有趣的问题,并引起了生物信息学领域许多研究人员的关注。为解决这一问题,进行了多种研究,但其性能结果仍需进一步改进。为此,基于机器学习和深度学习算法,引入了一种智能计算模型,即iPSI(2L)-XGBoost,用于区分启动子及其强弱。所提出的计算模型iPSI(2L)-XGBoost能够在两层中分别达到86.79%和78.64%的交叉验证精度,就所有评估指标而言,拟议的iPSI(2L)-XGBoost模型比其他模型获得了有效的成功率。因此,iPSI(2L)-XGBoost模型将为启动子鉴定的学术研究提供一个有用的工具。The classification of promoters has become an interesting issue and has attracted the attention of many researchers in the field of bioinformatics.To solve this problem,various studies have been conducted,but their performance results still need to be further improved.Therefore,based on machine learning and deep learning algorithms,an intelligent computing model,iPSI(2L)-XGBoost,is introduced to distinguish promoters and their strengths.The proposed computing model iPSI(2L)-XGBoost can achieve cross validation accuracy of 86.79%and 78.64%in two layers,respectively.For all evaluation indicators,the proposed iPSI(2L)-XGBoost model achieves an effective success rate compared to other models.Therefore,the iPSI(2L)-XGBoost model will provide a useful tool for academic research on promoter identification.
关 键 词:启动子 启动子识别 卷积神经网络 多特征融合 XGBoost
分 类 号:TP39[自动化与计算机技术—计算机应用技术] TP18[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.4