检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴振慧[1] WU Zhen-hui(Yangzhou Polytechnic College,Yangzhou 225009,China)
机构地区:[1]扬州职业大学,江苏扬州225009
出 处:《扬州职业大学学报》2023年第1期17-21,34,共6页Journal of Yangzhou Polytechnic College
摘 要:在点云数据采集过程中,现场情况会导致点云数据质量下降,出现如点云残缺、点云稀疏、噪声等问题,传统点云配准算法在对低质量点云进行配准时会出现配准失败的问题。针对低质量点云配准的挑战,提出一种粗匹配和精匹配结合的算法,通过PPF方法进行粗匹配,将其计算结果作为ICP精匹配方法的迭代初值,提高算法的速度和精度。最后,分别针对稀疏点云、含噪声点云和残缺点云进行实验验证,证明了本算法的有效性。In the process of point cloud data collection,the on-site situation will lead to the deterioration of point cloud data quality,such as point cloud incompleteness,point cloud sparseness,noise and other problems,and the traditional point cloud registration algorithm will fail to register low quality point cloud.Aiming at the challenge of low-quality point cloud registration,this paper proposes an algorithm combining coarse matching and fine matching.The PPF method is used for coarse matching,and the calculated results are taken as the initial iteration value of ICP fine matching method,which improves the speed and accuracy of the algorithm.Finally,experiments are carried out for sparse point cloud,noisy point cloud and incomplete point cloud respectively,which proves the effectiveness of the proposed algorithm.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.135.190.163