检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘卓 贾明涛[1,2] 王李管[1,2] LIU Zhuo;JIA Mingtao;WANG Liguan(School of Resources and Safety Engineering,Central South University,Changsha 410083,Hunan,China;Digital Mine Research Center,Central South University,Changsha 410083,Hunan,China)
机构地区:[1]中南大学资源与安全工程学院,湖南长沙410083 [2]中南大学数字矿山研究中心,湖南长沙410083
出 处:《黄金科学技术》2023年第2期302-312,共11页Gold Science and Technology
摘 要:传统地下移动装备自主导航主要依靠预先建立的静态地图做出全局路径规划,在遇到突然出现的障碍物时容易产生振荡的轨迹,导致行驶路线无法被执行。为解决上述问题,提出了在全局路径规划的基础上增加改进TEB(Time Elastic Band)局部路径规划,并对TEB算法增加曲率约束、急动度约束、末端平缓约束和能耗约束,以适应地下巷道环境。试验结果表明:改进TEB算法产生了适应度更高的轨迹,有效地缩短了路径长度,降低了速度的跳变;优化后的路径平滑性得到提高,与目标点的偏差减小,并在运行效率方面比传统TEB路径规划有所提高,改进前的平均路径代价值为23.09,改进后的平均路径代价值为10.19,总体代价值降低了55.87%。With the rapid development of unmanned driving technology,the driverless vehicles on the road have been widely used,which has laid a solid foundation for the fully unmanned mine.Especially for underground operation equipment,the roadway environment has the characteristics of closedness,irregular driving area,and difficulty in environmental perception,which makes the mobile equipment of underground manual driving inefficient and frequent accidents.So in a chaotic,irregular and dynamic environment,a safe and efficient autonomous navigation system is essential.The traditional autonomous navigation of underground mobile equipment mainly relies on pre-established static maps to make global path planning,then directly hands over the global path to control model,which makes it impossible to update the map in time when encountering sudden obstacles,resulting in oscillating trajectories and crooked paths.In order to solve the above problems,this article proposed the improved TEB(Time Elastic Band)local path planning to quickly update the path by combining global planning and local planning on the basis of mapping and navigation.In order to adapt the underground roadway environment,add target point constraints,urgency constraints,end smoothing constraints and energy consumption constraints,the nonlinear optimization problem can be iteratively solved through the G2O graph optimization framework to obtain a suboptimal solution that meets the requirements,the programming speed is within 100 ms.By simulating the dual-lane collision-free,dual-lane oncoming traffic,dynamic crossing scene,according to the principle of underground driving,the improved TEB algorithm produces a more feasible trajectory,which effectively shortens the path length,reduces the number of turns and stops,especially the path smoothness at the corner,and the operating efficiency is higher than the traditional TEB path planning algorithm.The average path generation value before the improvement was 23.09,and the average path generation value after the improve
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49