检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:关键 伍僖杰 丁昊 刘宁波 黄勇 曹政 魏嘉彧 GUAN Jian;WU Xijie;DING Hao;LIU Ningbo;HUANG Yong;CAO Zheng;WEI Jiayu(Naval Aviation University,Yantai 264001,China;Unit 92192 of the PLA,Ningbo 315122,China)
机构地区:[1]海军航空大学,烟台264001 [2]中国人民解放军92192部队,宁波315122
出 处:《电子与信息学报》2023年第5期1602-1610,共9页Journal of Electronics & Information Technology
基 金:国家自然科学基金(61871391,61871392,62101583)。
摘 要:对于特征类的海面小目标检测方法,现有3特征检测器通常采用凸包分类算法完成检测。在实际应用时发现,该分类算法生成的判决区域在某些情况下不能很好地反映海杂波样本集合在特征空间中的分布情况,进而对检测器性能造成一定程度的损失。相比之下,使用凹包算法生成的判决区域是由凸包内剖得到的,它能更加贴合海杂波样本的分布,因此该文将判决区域的形式由凸包转化为凹包,并在此基础之上提出一种基于3维凹包学习算法的海面小目标检测方法。同时,针对现有3维凹包算法存在的内剖效率低、无法实现恒虚警检测的缺点,该文通过优化内剖点选择方法、增加“外补”环节的方式对算法进行改进。最后,经实测CSIR数据及X波段试验雷达数据共同验证,在其他参数均相同时,该文方法的检测性能要优于已有的多特征检测方法,并且通过对凹包算法的复杂度分析证明了所提方法的应用潜力。For radar maritime target detection method of feature class,the convex hull classification algorithm is usually used in existing three feature detectors to complete detection.It is found that the decision region generated by convex hull learning algorithm may not well reflect the distribution of sea clutter samples in feature space in actual application,which may cause a certain degree of performance loss.By contrast,the decision region generated by concave hull algorithm is dug from convex hull,which can fit the distribution of sea clutter samples better.Therefore,in this paper,the form of the decision region is transformed from convex hull to concave hull.On this basis,a small target detection method based on 3-D concave hull learning algorithm is proposed.However,the existing 3-D concave hull algorithm has the disadvantages of low efficiency and unable to realize constant false alarm detection.To solve this problem,this paper improves the algorithm by optimizing the selection method of digging point and adding a process named"external complement".Finally,the measured CSIR datasets and X-band experimental radar data verify that the performance of proposed detection methods is superior to existing detection methods when other parameters are the same.At the same time,the analysis of algorithm complexity proves the application potential of proposed method.
分 类 号:TN959[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.117.171.169