舍饲绵羊运动状态监测方法的研究  被引量:2

Study on the monitoring method of sheep motion state in house feeding

在线阅读下载全文

作  者:何春明 赵斌 张丽娜[1] HE Chunming;ZHAO Bin;ZHANG Li’na(College of Physics and Electronic Information,Inner Mongolia Normal University,Hohhot 010022,China)

机构地区:[1]内蒙古师范大学物理与电子信息学院,呼和浩特010022

出  处:《黑龙江畜牧兽医》2023年第7期48-52,59,132,133,共8页Heilongjiang Animal Science And veterinary Medicine

基  金:国家自然科学基金项目(62061037);内蒙古自然科学基金项目(2019LH06002);内蒙古自治区高等学校科学研究项目(NJZY20027)。

摘  要:为了解决人工监测舍饲绵羊运动行为耗时费力、效率低下的问题,试验用三轴加速度传感器采集舍饲羊只典型运动行为(采食、行走、反刍行为)数据,对行为数据进行滤波、特征提取和主成分分析后,分别采用支持向量机算法、BP神经网络算法对行为数据进行分类。结果表明:两种方法均能对行为数据进行有效分类,其中支持向量机算法对采食行为的识别率高达97.3%,行为的平均识别率为87.6%;BP神经网络算法对采食、行走和反刍行为的识别率分别为94.0%、93.8%、96.3%,行为的平均识别率为94.6%。说明与支持向量机算法比较,BP神经网络算法可更有效地监测舍饲绵羊的运动状态,并且平均识别率更高。In order to solve the problems of time-consuming and low efficiency of manual monitoring of house-fed sheep's movement behavior,triaxial acceleration sensors were used to collect typical movement behavior data(feeding,walking and ruminating behaviors)of house-fed sheep.After filtering,feature extraction and principal component analysis,the behavior data were classified by support vector machine(SVM)algorithm and BP neural network algorithm,respectively.The results showed that both methods could effectively classify behavior data,among which the recognition rate of feeding behavior by SVM algorithm was as high as 97.3%,and the average recognition rate of behavior was 87.6%.Based on BP neural network algorithm,the recognition rates of feeding,walking and ruminating behaviors were 94.0%,93.8%and 96.3%,respectively,and the average recognition rate of behaviors was 94.6%.It indicated that the BP neural network algorithm monitor the movement state of sheep in the house more effectively compared with the SVM algorithm,more effective than the support vector machine algorithm in monitoring the movement state of house-fed sheep,and the average recognition rate was higher.

关 键 词:舍饲养殖 行为识别 可穿戴传感器 支持向量机算法 BP神经网络算法 

分 类 号:S24[农业科学—农业电气化与自动化] TP274[农业科学—农业工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象