供需匹配视角下居家养老护理员调度研究  被引量:2

Study on Scheduling of Home-health-care Staff for the Elderly from the Perspective of Supply and Demand Matching

在线阅读下载全文

作  者:马跃如[1] 文铮 MA Yueru;WEN Zhe(School of Business,Central South University,Changsha,Hunan 410083,China)

机构地区:[1]中南大学商学院,湖南长沙410083

出  处:《工业工程与管理》2023年第2期66-78,共13页Industrial Engineering and Management

基  金:国家自然科学基金面上项目(72172159);国家社会科学基金重大项目资助(17ZDA326);教育部人文社会科学基金资助项目(19YJA630053);湖南省社会科学基金重点资助项目(19ZDB52)。

摘  要:居家养老作为我国重要的养老模式,面临医护资源紧缺、护理员成本高昂的现状,必须激活有限的养老护理员资源,缓解供需矛盾,提升养老服务质量。本文以老年人实际需求为关注点,结合机会约束规划理论,划分护理员等级,引入技能需求匹配、工作时长等约束,构建供需匹配视角下护理员调度模型并设计遗传算法求解,同时对模型参数的敏感性进行分析,旨在为居家养老服务中心提供有效的调度决策建议。研究结果表明,改进的遗传算法具有稳定性和有效性,护理员工作时长限制及其约束置信度、服务时间窗间隔及紧急需求占比均对模型有影响。Home-health-care is an important old-age care mode in China.It is facing the current situation of shortage of medical resources and high nursing attendant cost.Therefore,it is necessary to activate the limited home-health-care staff for the elderly resources,alleviate the contradiction between supply and demand,and improve the quality of home-health-care service.Focusing on the actual needs of the elderly,combining the theory of opportunity constraint planning,dividing the level of nursing attendant,introducing constraints such as skill demand matching,working hours,etc.,a scheduling model from the perspective of supply and demand matching was built.A genetic algorithm was designed to solve this problem.The sensitivity of the parameters in the model was analyzed.The purpose was to provide effective scheduling policy recommendations for home-health-care service center.The results show that the improved genetic algorithm is stable and effective.The working time limit together with its constraint confidence,the time window interval,and the proportion of emergency demand have influence on the model.

关 键 词:供需匹配 调度优化 遗传算法 居家养老护理员 

分 类 号:F273[经济管理—企业管理] TP301[经济管理—国民经济]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象