检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王玉坤 李泽阳 许康[1] 王子正 Wang Yu-Kun;Li Ze-Yang;Xu Kang;Wang Zi-Zheng(Beijing Key Laboratory of Petroleum Data Mining,China University of Petroleum,Beijing 102249,China;State Key Laboratory of Cryptology,Beijing 100036,China)
机构地区:[1]中国石油大学(北京),北京石油数据挖掘重点实验室,北京102249 [2]密码科学技术全国重点实验室,北京100036
出 处:《物理学报》2023年第10期65-73,共9页Acta Physica Sinica
基 金:国家自然科学基金(批准号:62101600);中国石油大学(北京)科研基金(批准号:2462021YJRC008);密码科学技术全国重点实验室基金(批准号:MMKFKT202109)资助的课题.
摘 要:自测试是对所声称量子设备的一种高安全级别验证,仅根据设备观测到的统计数据来确认设备中所制备的量子态和所执行的测量.制备-测量场景下量子系统的自测试可依赖于测量统计关联来实现.目前针对制备-测量场景量子系统自测试的研究比较单一,只有当统计关联满足一定的不等式要求时才能实现其系统的自测试.本文进一步提出了制备-测量场景下量子比特态制备集和测量集实现自测试的新标准,实现了比BB84粒子更多的量子比特态集及测量集的自测试,这有利用满足实际实验对不同量子态集制备的需求.此外,对所提出的标准进行了鲁棒性分析,使新标准在实验噪声下具有实际意义.本文的研究增加了量子比特态制备和测量系统自测试标准的多样性,有利于实际不同非纠缠单量子系统的自测试.Self-testing is the high-level security verification of a claimed quantum device,confirming the quantum states prepared in the device and the measurements performed based solely on the observed statistics.The statistical correlations can realize the self-testing of the quantum system in the preparing-and-measuring scenario.However,most of previous studies focused on the self-testing of shared entangled states between devices,at present only a few researches are presented and the existing work can only simultaneously self-test the states and measurements when some witness inequalities reach a maximum violation.We focus on four-state preparation and the selected scenarios of two measurements.In this scenario,Armin Tavakoli et al.[Tavakoli A,Kaniewski J,Vértesi T,Rosset D,Brunner N 2018 Phys.Rev.A 98062307]have put forward a criterion based on the dimensional witness violation inequality which can achieve BB84 particles and corresponding Pauli measurements.However,in addition to the maximum violation of the inequality,any statistics with deviation from the maximum deviation cannot be self-tested.Besides,only the BB84 particle preparation and measurements system can be self-tested with that criterion,resulting in a large number of four-state preparation and two measurement systems that cannot be self-tested.Therefore,in this work,in addition to the maximum violation of that dimension inequality,we directly focus on the full observed statistics and further propose some new criteria for self-testing qubit quantum systems in the preparing-and-measiuring scenarios.And the self-testing criteria are proven in an ideal case.We construct a local isometry by using the constructions commonly used in device-independent cases,exchange the target system with the additional system,and realize the self-testing of more qubit state sets and measurement sets than BB84 particles.This meets the requirements for practical experiments to realize various tasks by different quantum state sets.In addition,we perform a robust analysis of the
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117