求解Rosenau-Kawahara方程的Sinc配点法  

Solving the Rosenau-Kawahara Equation with Sinc Collocation Method

在线阅读下载全文

作  者:邓文超 吴蓓蓓 徐丽 DENG Wenchao;WU Beibei;XU Li(School of Mathematics and Physics,Shanghai University of Electric Power,Shanghai 200090,China)

机构地区:[1]上海电力大学数理学院,上海200090

出  处:《重庆师范大学学报(自然科学版)》2023年第2期113-118,共6页Journal of Chongqing Normal University:Natural Science

基  金:国家自然科学基金(No.11502141)。

摘  要:[目的]对Rosenau-Kawahara方程的初边值问题进行了数值研究,给出了求解Rosenau-Kawahara方程的Sinc配点法。[方法]空间离散采用Sinc配点法,时间离散采用向前有限差分法,并引入参数θ来建立混合差分格式。[结果]对差分格式的稳定性进行了分析,并得到了稳定性条件。[结论]数值实验证明了所构造方法的有效性,且Crank-Nicholson格式的数值结果优于有限差分法和五次B样条方法。[Purposes]The initial-boundary value problem of Rosenau-Kawahara equation is numerically studied.The Sinc collocation method for solving Rosenau-Kawahara equation is proposed.[Methods]The equation is fully-discretized by using Sinc collocation method for spatial discretization and the forward finite difference for time discretization.A hybrid difference scheme is obtained by means of parameter o.[Findings]The stability of difference scheme is analyzed and the stability condition is given.[Conclusions]A numerical experiment is performed to illustrate the validity of the constructed method.The numerical results of the Crank-Nicholson scheme are better than those of the conservative finite difference schemes and the quintic B-spline collocation finite element method.

关 键 词:Rosenau-Kawahara方程 Sinc配点法 有限差分 稳定性 

分 类 号:O241.82[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象