检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:邓文超 吴蓓蓓 徐丽 DENG Wenchao;WU Beibei;XU Li(School of Mathematics and Physics,Shanghai University of Electric Power,Shanghai 200090,China)
出 处:《重庆师范大学学报(自然科学版)》2023年第2期113-118,共6页Journal of Chongqing Normal University:Natural Science
基 金:国家自然科学基金(No.11502141)。
摘 要:[目的]对Rosenau-Kawahara方程的初边值问题进行了数值研究,给出了求解Rosenau-Kawahara方程的Sinc配点法。[方法]空间离散采用Sinc配点法,时间离散采用向前有限差分法,并引入参数θ来建立混合差分格式。[结果]对差分格式的稳定性进行了分析,并得到了稳定性条件。[结论]数值实验证明了所构造方法的有效性,且Crank-Nicholson格式的数值结果优于有限差分法和五次B样条方法。[Purposes]The initial-boundary value problem of Rosenau-Kawahara equation is numerically studied.The Sinc collocation method for solving Rosenau-Kawahara equation is proposed.[Methods]The equation is fully-discretized by using Sinc collocation method for spatial discretization and the forward finite difference for time discretization.A hybrid difference scheme is obtained by means of parameter o.[Findings]The stability of difference scheme is analyzed and the stability condition is given.[Conclusions]A numerical experiment is performed to illustrate the validity of the constructed method.The numerical results of the Crank-Nicholson scheme are better than those of the conservative finite difference schemes and the quintic B-spline collocation finite element method.
关 键 词:Rosenau-Kawahara方程 Sinc配点法 有限差分 稳定性
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.112