检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张宁 于鸣[1,2] 任洪娥 陶锐[1,3] 赵龙 ZHANG Ning;YU Ming;REN Honge;TAO Rui;ZHAO Long(College of Information and Computer Engineering,Northeast Forestry University,Harbin 150040,China;Heilongjiang Forestry Intelligent Equipment Engineering Research Center,Harbin 150040,China;Hulunbuir University,Hulunbuir 021008,China;East University of Heilongjiang,Harbin 150066,China)
机构地区:[1]东北林业大学信息与计算机工程学院,哈尔滨150040 [2]黑龙江林业智能装备工程研究中心,哈尔滨150040 [3]呼伦贝尔学院,内蒙古呼伦贝尔021008 [4]黑龙江东方学院,哈尔滨150066
出 处:《哈尔滨理工大学学报》2023年第1期37-45,共9页Journal of Harbin University of Science and Technology
基 金:黑龙江省自然科学基金(LH2020F040);中央高校基本科研业务费专项基金(2572017PZ10)。
摘 要:当前基于深度学习的目标检测技术得到了迅速发展,但小目标检测仍然是一个有待改善的难题。相比于大目标,小目标检测任务存在分辨率低、特征易丢失等特点,很多通用的目标检测算法不能直接迁移到小目标检测。特征金字塔融合能有效结合深层和浅层的特征,增强对小目标的检测性能,然而现有模型大都忽略了相邻层间融合时的信息不平衡问题。针对此问题,提出将有效融合因子的思想融入YOLO-v4的PANet结构,添加融合因子L-α控制深层向浅层传递的信息量,从而有效提高信息融合效率,增强YOLO-v4对小目标的检测能力。实验表明,加入了L-α的YOLO-v4模型,在Tiny Person数据集上平均精度AP_(50)^(tiny)和AP_(50)^(small)分别提高了2.14%和1.85%,在MS COCO数据集上平均精度AP和AP_(S)分别提高了1.4%和2.7%,且检测结果优于其他小目标检测算法,证明此改进方法对小目标检测有效。The detection ability for small object is still need to be improved urgently in spite of the rapidly developing object detection technology based on deep learning at present.Compared with large objects,small object detection tasks hold drawbacks of low resolution and feature loss which leads to that many general algorithms cannot be directly applied to small object detection.The feature pyramid fusion can effectively combine the features of deep and shallow layers to enhance the performance.To solve the problem most models existing-ignoring the imbalance of information during the feature fusion between adjacent layers,it is proposed to integrate the idea of fusion factor into the PANet of YOLO-v4,use the fusion factor L-α to control the amount of information transmitted from the deep layer to the shallow,so as to effectively improve the efficiency of information fusion and enhance the ability of YOLO-v4 for small objects detection.With the addition of L-α in YOLO-V4 model,the experiment results show that the AP_(50)^(tiny)and AP_(50)^(small)on the Tiny Person are improved by 2.14%and 1.85%respectively,while the AP and AP_(S)on the MS COCO are separately increased by1.4%and 2.7%.It is proved that this improved method is effective for small object detection with the evidence of better result than other small object detection algorithms.
关 键 词:计算机视觉 小目标检测 特征金字塔 融合因子 特征融合
分 类 号:TP751.1[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30