基于局部熵的区域活动轮廓图像分割模型  被引量:2

Regional Active Contour Image Segmentation Model Based on Local Entropy

在线阅读下载全文

作  者:李梦[1] 詹毅[1] 王艳 LI Meng;ZHAN Yi;WANG Yan(School of Mathematics and Statistics,Chongqing Technology and Business University,Chongqing 400067,China;School of Mathematical Science,Chongqing Normal University,Chongqing 401331,China)

机构地区:[1]重庆工商大学数学与统计学院,重庆400067 [2]重庆师范大学数学科学学院,重庆401331

出  处:《数据采集与处理》2023年第3期586-597,共12页Journal of Data Acquisition and Processing

基  金:国家自然科学基金(11901071);重庆市自然科学基金面上项目(cstc2020jcyj-msxmX0162)。

摘  要:为解决区域活动轮廓模型不能有效分割灰度不均图像的问题,提出了局部熵约束的区域活动轮廓模型应用于图像分割。首先基于局部熵信息将图像划分为两个特征区域,然后利用局部熵特征信息构造二值拟合能量,并与区域可放缩拟合(Region⁃scalable fitting,RSF)模型相结合,最后得到水平集演化方程。该模型考虑了图像灰度分布的聚集特征和局部区域统计信息,能有效处理灰度不均匀、弱边缘等图像分割问题,且对轮廓初始位置更具鲁棒性,医学图像实验结果验证了模型的有效性。To solve the problem that the regional active contour model cannot effectively segment weak targets,a regional active contour model with local entropy constraints is proposed for image segmentation.Firstly,the image is divided into two feature regions based on local entropy information.Then a local entropy binary fitting energy is constructed by using local entropy feature information,and finally a level set evolution equation is obtained,which is combined with a region-scalable fitting(RSF)model.The model considers the clustering characteristics of the gray distribution and the statistical information of the local area of the image,and it is effective in handing intensity inhomogeneity,weak edge segmentation,and flexible contour initialization.Medical image experiment results verify the effectiveness of the proposed model.

关 键 词:图像分割 二值拟合 局部熵 区域活动轮廓模型 能量泛函 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象