检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:耿波[1] 李青松 潘曙辉 董晓旭 GENG Bo;LI Qingsong;PAN Shuhui;DONG Xiaoxu(Research Institute of Nuclear Power Operation,Wuhan Hubei 430223,China;School of Computer Science&Technology,Huazhong University of Science and Technology,Wuhan Hubei 430074,China;School of Metallurgy and Energy,North China University of Science and Technology,Tangshan Hebei 063210,China)
机构地区:[1]核动力运行研究所,湖北武汉430223 [2]华中科技大学计算机科学与技术学院,湖北武汉430074 [3]华北理工大学冶金与能源学院,河北唐山063210
出 处:《湖北电力》2023年第1期104-111,共8页Hubei Electric Power
基 金:湖北省重点研发计划项目(项目编号:2022BAA046)。
摘 要:工业领域的生产设备异常检测实际上是采用无监督技术准确预测设备早期劣化的异常工况和定位具体的异常参数。深度自编码高斯混合模型DAGMM在生产设备数据集上异常检测性能较优,但仍有提升空间。针对深度自编码存在的高维信息丢失的问题,提出使用自组织映射辅助均匀流形近似与投影改进的模型SOM-UMAP-DAGMM。通过将UMAP算法改造为神经网络,在原来的损失函数上新增一项交叉熵实现与DAGMM联合训练,补充高维数据分布信息;并结合预训练SOM,补充空间拓扑结构信息。在两个公开数据集和3个生产设备数据集的实验结果上显示,SOM-UMAP-DAGMM较DAGMM性能得到了一定的提升。Anomaly detection of production equipment in industrial field is actually using unsupervised technology to accurately predict the abnormal condition of early deterioration of equipment and locate specific abnormal parameters.The Deep Autoencoding Gaussian Mixture Model(DAGMM)has better anomaly detection performance in production equipment data sets,but there is still room for improvement.Aiming at the problem of high-dimensional information loss in deep autoencoding,this paper proposes a model named Self-organized Mapping-assisted(SOM)Uniform Manifold Approximation and Projection(UMAP)DAGMM.And then,by transforming the UMAP algorithm into a neural network,the paper adds a new cross entropy to the original loss function,so as to realize joint training with DAGMM and supplement the high-dimensional data distribution information.Finally,the paper combines with pre-training SOM to supplement the space topology structure information.The results of the experiment conducted in the two public data sets and three production equipment data sets show that the performance of SOM-UMAP-DAGMM has got a certain improvement compared with that of DAGMM.
关 键 词:异常检测 混合高斯模型 均匀流形近似与投影 自组织辅助映射
分 类 号:TP206.3[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.137.169.229