自编码器及其改进算法在滚动轴承故障诊断的应用  被引量:2

Application of Auto-Encoder and Its Improvement in Rolling Bearing Fault Diagnosis

在线阅读下载全文

作  者:周建民 刘露露[1,2] 杨晓彤 王云庆 Zhou Jianmin;Liu Lulu;Yang Xiaotong;Wang Yunqing(Key Laboratory of Conveyance and Equipment of Ministry of Education,East China Jiaotong University,Nanchang 330013,China;State Key Laboratory of Performance Monitoring and Protecting of Rail Transit Infrastructure,East China Jiaotong University,Nanchang 330013,China)

机构地区:[1]华东交通大学载运工具与装备教育部重点实验室,江西南昌330013 [2]华东交通大学轨道交通基础设施性能监测与保障国家重点实验室,江西南昌330013

出  处:《华东交通大学学报》2023年第3期88-96,共9页Journal of East China Jiaotong University

基  金:国家自然科学基金项目(51865010);江西省教育厅科技项目(GJJ210639)。

摘  要:自编码器作为神经网络中典型的无监督学习模型,在数据降噪和数据可视化降维方面具有明显的优势,且在各应用领域都引起了普遍重视,在滚动轴承故障诊断中的应用也日渐增加。为了及时了解并掌握自编码器及其改进算法在滚动轴承方面的应用,对近年具有代表性的自编码器相关算法进行了分类和总结。首先,阐述了自编码器的原理和几种基于其改进的自编码器方法的理论简述,并分析了这些算法的改进目的与改进方式。然后,列举了上述算法在滚动轴承故障诊断领域的应用。最后,总结了当前自编码器及其改进算法存在的问题,分析了解决问题的思路。As a typical unsupervised learning model in neural networks,the self-encoder has attracted widespread attention in various areas,and its application in rolling bearing fault diagnosis is increasing with obvious advantages in data noise reduction and data visualization dimension reduction.In order to timely understand and master the application of auto-encoder and its improved algorithm in rolling bearing,this paper classifies and summarizes the representative auto-encoder related algorithms in recent years.Firstly,the principle of self-encoder and the theoretical sketch of several self-encoder methods based on its improvement are described,and the improvement purpose and improvement of these algorithms are analyzed.Then,the applications of these algorithms in the field of rolling bearing fault diagnosis are listed.Finally,the problems of present-day self-encoders and their improved algorithms are summarized,and the ideas for solving them are analyzed.

关 键 词:自编码器 无监督学习 故障诊断 特征提取 

分 类 号:TH133.33[机械工程—机械制造及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象