检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李道全 李腾 李玉秀 LI Daoquan;LI Teng;LI Yuxiu(School of Information and Control Engineering,Qingdao University of Technology,Qingdao,Shandong 266520,China)
机构地区:[1]青岛理工大学信息与控制工程学院,山东青岛266520
出 处:《计算机工程与应用》2023年第12期270-277,共8页Computer Engineering and Applications
基 金:山东省自然科学基金(ZR2020MF001)。
摘 要:随着互联网技术的不断发展,用户可以在手机或电脑上通过各种应用程序访问互联网,但一些恶意程序产生的异常流量给网络环境带来了危害。针对这一问题,提出了一种基于自适应特征选择与改进KNN的网络流量分类模型。通过引进余弦相似度的互信息法设置了特征筛选倾向度对数据集所有特征进行排序,根据每个特征子集的特征适应度选出最优特征子集,根据各类流量之间的类间距离拆解多分类问题,采用改进KNN算法对流量进行分类。实验结果表明,所提方法在样本不均衡的相似类型流量分类问题上提升效果显著,且整体达到了较好的分类性能。With the continuous development of Internet technology,users can access the Internet through various applications on mobile phones or computers,but the abnormal traffic generated by some malicious programs has brought harm to network environment.Aiming at this problem,this paper proposes a network traffic classification model based on adaptive feature selection and improved KNN.The feature selection tendency is set up by introducing the mutual information method of cosine similarity to sort all the features of the data set,and then the optimal feature subset is selected according to the feature fitness of each feature subset,and then disassemble the multi-classification problem according to the interclass distance between various types of traffic,and finally uses the improved KNN algorithm to classify the traffic.The experimental results show that the proposed method has a significant improvement effect on the classification of similar types of traffic with uneven samples,and achieves a better classification performance overall.
分 类 号:TP393.0[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.170