基于改进MobileNet的咖啡豆缺陷检测  被引量:2

Coffee bean defect detection based on improved MobileNet

在线阅读下载全文

作  者:叶建华 唐辉 罗奋翔 徐欢 徐帅龙 YE Jianhua;TANG Hui;LUO Fenxiang;XU Huan;XU Shuailong(School of Mechanical and Automotive Engineering,Fujian University of Technology,Fuzhou 350118,China)

机构地区:[1]福建工程学院机械与汽车工程学院,福建福州350118

出  处:《福建工程学院学报》2023年第3期257-263,共7页Journal of Fujian University of Technology

基  金:福建省自然科学基金(2021J011052);福建省科技计划星火项目(2021S0026)

摘  要:针对现有咖啡豆缺陷检测方法鲁棒性、实时性不高的问题,提出基于改进MobileNet的咖啡豆缺陷检测方法,构建以MobileNet为核心的轻量级检测网络。对咖啡豆检测样本进行采集和增强,构建包含5种类型的咖啡豆缺陷检测数据集。通过卷积通道数和卷积模块的优化调整,压缩模型参数以匹配分类任务和满足边缘设备的部署要求。引入Mish激活函数和学习率的自适应调整方法,提升模型的收敛性能。利用迁移学习的方式优化模型参数,进一步提升模型识别准确率。实验表明,改进模型在自建咖啡豆分类检测数据集上的平均准确率为96.13%,较原模型平均准确率的93.17%提升了2.96%;模型参数则从3.21×10^(6)减少到了0.15×10^(6),不到原模型的5%。相比于VGG16_bn、ResNet50、SqueezeNet和MobileNet,改进模型准确率分别高出0.65%、1.39%、2.39%、2.96%。在提升精度的同时,该方法在参数量、内存占用量和浮点运算量上表现也为最优,能为相关农产品的缺陷检测提供参考。A coffee bean defect detection method based on improved MobileNet was proposed aiming at the problems of low robustness and poor real-time performance of existing coffee bean defect detection methods.A lightweight detection network based on MobileNet was constructed.A coffee bean data set with five defect types was constructed.The parameter numbers of the model were reduced by optimizing and adjusting its convolution channel number and convolution module.Therefore,it can match the classification task and meet the deployment requirements of edge devices.Mish activation function and adaptive adjustment method of learning rate was applied to improve the convergence performance of the model.Transfer learning was used to optimize the model parameters and further improve the model accuracy.Experiment results show that the average accuracy of the improved model on the self-built dataset was 96.13%,which was 2.96%higher than the 93.17%of the original model.The model parameters were reduced from 3.21×10^(6) to 0.15×10^(6),which was less than 5%of the original model.The accuracy of the improved model was 0.65%,1.39%,2.39%and 2.96%higher than that of VGG16_bn,ResNet50,SqueezeNet and MobileNet,respectively.While improving the accuracy,this method also has the best performance in terms of parameters,memory usage and floating-point operations.Therefore,it can provide a reference for the defect detection of related agricultural products.

关 键 词:图像识别 卷积神经网络 深度学习 MobileNet 缺陷检测 咖啡豆 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象