检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:丁洁[1,2] 丁春媚 张建新 Ding Jie;Ding Chunmei;Zhang Jianxin(School of Tourism,Nanjing Institute of Tourism and Hospitality,Nanjing 211100,China;School of Geography,Nanjing Normal University,Nanjing 210023,China;School of Geography and Ocean Science,Nanjing University,Nanjing 210023,China)
机构地区:[1]南京旅游职业学院旅游管理学院,江苏南京211100 [2]南京师范大学地理科学学院,江苏南京210023 [3]南京大学地理与海洋科学学院,江苏南京210023
出 处:《南京师范大学学报(工程技术版)》2023年第2期77-86,共10页Journal of Nanjing Normal University(Engineering and Technology Edition)
基 金:教育部人文社会科学研究一般项目(22YJA760106);江苏省高职院校教师专业带头人高端研修项目(2022GRFX034);江苏省高校哲学社会科学研究项目(2022SJYB0854).
摘 要:网络搜索大数据为研究游客量预测提供了新的视角,而多数研究运用的传统计量经济模型难以处理网络搜索与客流时序中包含的大量非线性波动特征,导致预测精度不够理想.引入经验模态分解方法(empirical mode decomposition,EMD)将向量自回归(vector autoregression,VAR)模型改进为EMD-VAR模型.EMD方法分解夫子庙景区长三角日际网络搜索和游客量序列,得到不同频率尺度的分量,基于波动关联的视角将同一尺度的两类序列分量组合建立EMD-VAR模型进行预测.结果表明:(1)网络搜索波动周期比游客量波动周期长.(2)网络搜索与游客量波动的关联紧密度在法定节假日时期最高.(3)EMD-VAR模型比ARMA模型和VAR模型具有更高的预测精度.Big data from network search provides a new perspective for the study of tourist flow volume prediction,but the traditional econometric models used in most studies are difficult to deal with the large number of nonlinear fluctuation characteristics in the timing series of network search and tourist flow,which leads to the unsatisfactory prediction accuracy.In this paper,empirical mode decomposition(EMD)is introduced to improve the vector autoregression(VAR)model to EMD-VAR model.EMD method is used to decompose the daily network search data and tourist flow volume of The Yangtze River Delta of Nanjing Confucius Temple Scenic Area,and a series of components with different frequency scales are obtained.Then,based on the perspective of fluctuation correlation,components of both network search data and tourist flow volume in the same scale are combined to establish a VAR model for prediction.The results show that:(1)The fluctuation cycle of network search is longer than that of tourist flow volume.(2)The compactness of correlation between network search and tourists flow volume is the greatest during the statutory holiday period.(3)The prediction accuracy of the EMD-VAR model is better than that of ARMA model and VAR model,respectively.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117