检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈甲华 王平平[1] CHEN Jiahua;WANG Pingping(School of Economics Management and Law,University of South China,Hengyang 421001,Hunan,China;Hunan Provincial Key Laboratory of Emergency Safety Technology and Equipment for Nuclear Facilities,Hengyang 421001,Hunan,China)
机构地区:[1]南华大学经济管理与法学学院,湖南衡阳421001 [2]南华大学核设施应急安全作业技术与装备湖南省重点实验室,湖南衡阳421001
出 处:《昆明理工大学学报(自然科学版)》2023年第3期119-127,共9页Journal of Kunming University of Science and Technology(Natural Science)
基 金:湖南省教育厅重点项目(19A443);湖南省社科项目(14JD51)。
摘 要:乏燃料剪切机是后处理厂的关键设备,一旦刀具磨损严重,后处理厂工作将受到干扰,乏燃料剪切机刀具的监测和故障诊断对后处理有重要意义.将工作噪声信号采用时移对数据进行增强,并转换为梅尔频谱图,运用SpecAugment技术对梅尔频谱第二次数据增强,作为模型的输入.采用全局平均池化层替代全连接层的卷积神经网络作为噪声提取分类的基础模型,将卷积块注意力模块(CBAM)和提高网络训练稳定性的残差网络(ResNet)融合进卷积神经网络(CNN),构建CBAN-RCNN模型.实验表明,该模型故障诊断准确率达到96.85%,相对于单独的CNN和CBAM-CNN分别提高了4.42%和3.18%,具有更好的诊断能力.The spent fuel shears are the key equipment in the reprocessing plant.Once the tools are worn seriously,the reprocessing plant will be disturbed.Monitoring and fault diagnosis of the spent fuel shears tools are of great significance for reprocessing.The working noise signal is enhanced with time shift,and converted into Mel spectrum.SpecAugment technology is used to enhance the second data of Mel spectrum as the input of the model.The convolutional neural network with global average pooling layer instead of full connection layer is used as the basic model for noise extraction and classification.Then CBAM and residual block are integrated into CNN to build CBAN-RCNN model.The experimental results show that the fault diagnosis accuracy of the model reaches 96.85%,which is 4.42%and 3.18% higher than that of CNN and CBAM-CNN,respectively.The model has better diagnostic ability.
关 键 词:CBAM 残差块 卷积神经网络 乏燃料剪切机 刀具 故障诊断
分 类 号:TL24[核科学技术—核燃料循环与材料]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.147