检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘泉[1] 谢先亮 孟伟 艾青松[1] LIU Quan;XIE Xianliang;MENG Wei;AI Qingsong(School of Information Engineering,Wuhan University of Technology,Wuhan 430070,China)
机构地区:[1]武汉理工大学信息工程学院,湖北武汉430070
出 处:《华中科技大学学报(自然科学版)》2023年第5期53-59,共7页Journal of Huazhong University of Science and Technology(Natural Science Edition)
基 金:国家自然科学基金面上项目(52275029,52075398).
摘 要:为解决气动肌肉驱动的脚踝康复机器人实际控制中,无模型自适应迭代学习控制在系统噪声干扰下或初始拟伪偏导选择不当会导致算法收敛速度过慢、控制效果差的问题,提出一种基于高阶拟伪偏导整定的无模型迭代学习控制方法,并设计基于零化神经网络误差递归的迭代学习控制律.通过引入系统观测数据对初始拟伪偏导进行修正,减少拟伪偏导初始值的选取对于算法收敛速度的影响;通过设计抗噪声零化神经网络控制律,减小系统噪声对控制性能的影响,进而实现噪声环境下柔性康复机器人的高性能轨迹跟踪.仿真实验结果表明在噪声环境下能够利用较少的迭代轮次降低最大跟踪误差.机器人实际控制实验结果表明:该方法能够在7次迭代后使气动肌肉平均跟踪误差控制在2%以内,并且在不同初始拟伪偏导条件下均能获得较好的收敛性和轨迹跟踪性能.To solve the problem that model-free adaptive iterative learning control(MFAILC)in the practical control of ankle rehabilitation robot driven by pneumatic muscles could lead to slow convergence and poor control performance under system noise interference or improper selection of the initial pseudo-partial derivative(PPD),a model-free iterative learning control method based on high-order PPD tuning was proposed,and the control law of MFAILC based on the zeroing neural network(ZNN)error recursion was designed.The system observation data was introduced to modify the initial PPD and to reduce the influence of the selection of initial PPD on the convergence speed.The noise tolerant ZNN control law was designed to reduce the influence of system noise on control performance,enabling the high-performance trajectory tracking of flexible rehabilitation robot in noise environment.Simulation results show that the maximum tracking error can be reduced by fewer iterations in noise environments.The actual control results of robot show that the average tracking error of pneumatic muscle can be reduced within 2%after 7 iterations,and the superior convergence and trajectory tracking performance can be achieved under different initial PPDs.
关 键 词:迭代学习控制 拟伪偏导 零化神经网络 动态线性化 柔性康复机器人
分 类 号:TP13[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7