IM-EDRD from Retinal Fundus Images Using Multi-Level Classification Techniques  

在线阅读下载全文

作  者:M.P.Karthikeyan E.A.Mary Anita 

机构地区:[1]Department of Computer Science and Engineering,R.M.K.Engineering College,Chennai,601206,India [2]Department of Computer Science and Engineering,School of Engineering and Technology,Christ University,Bengaluru,560029,India

出  处:《Intelligent Automation & Soft Computing》2023年第1期567-580,共14页智能自动化与软计算(英文)

摘  要:In recent years,there has been a significant increase in the number of people suffering from eye illnesses,which should be treated as soon as possible in order to avoid blindness.Retinal Fundus images are employed for this purpose,as well as for analysing eye abnormalities and diagnosing eye illnesses.Exudates can be recognised as bright lesions in fundus pictures,which can be thefirst indicator of diabetic retinopathy.With that in mind,the purpose of this work is to create an Integrated Model for Exudate and Diabetic Retinopathy Diagnosis(IM-EDRD)with multi-level classifications.The model uses Support Vector Machine(SVM)-based classification to separate normal and abnormal fundus images at thefirst level.The input pictures for SVM are pre-processed with Green Channel Extraction and the retrieved features are based on Gray Level Co-occurrence Matrix(GLCM).Furthermore,the presence of Exudate and Diabetic Retinopathy(DR)in fundus images is detected using the Adaptive Neuro Fuzzy Inference System(ANFIS)classifier at the second level of classification.Exudate detection,blood vessel extraction,and Optic Disc(OD)detection are all processed to achieve suitable results.Furthermore,the second level processing comprises Morphological Component Analysis(MCA)based image enhancement and object segmentation processes,as well as feature extraction for training the ANFIS classifier,to reliably diagnose DR.Furthermore,thefindings reveal that the proposed model surpasses existing models in terms of accuracy,time efficiency,and precision rate with the lowest possible error rate.

关 键 词:Retinal fundus images EXUDATE diabetic retinopathy SVM ANFIS morphological component analysis 

分 类 号:R774.1[医药卫生—眼科] TP391.41[医药卫生—临床医学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象