检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:樊冲 Fan Chong(Jinzhou Big Data Management Center,Jinzhou 121000,China)
出 处:《网络安全与数据治理》2023年第6期97-102,共6页CYBER SECURITY AND DATA GOVERNANCE
摘 要:针对门诊量波动幅度较大的时间序列预测问题,先采用经验模态分解(EMD)将非线性较强的原始数据进行分解,然后通过极限学习机(ELM)将分解后的各个序列分量进行建模,最后将各个分量的预测值相加得出最终结果。将BP神经网络、ELM两个单一模型与EMD-ELM组合模型进行对比验证,实验结果表明组合模型的精准度明显好于两个单一模型。Aiming at the time series prediction with large-fluctuations of outpatient volume,firstly,it is necessary to decompose original data with strong nonlinearity by Empirical Mode Decomposition(EMD),model these decomposed sequence components by Extreme Learning Machine(ELM),and then sum up the prediction volume of these sequence components and finally draw a conclusion.The single models of BP neural network and ELM were compared and verified with the combined model of EMD-ELM,and it was found that the accuracy of the combined model was significantly better than that of the single models according to the experimental outcomes.
关 键 词:预测模型 时间序列 门诊量预测 极限学习机 经验模态分解
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.180.18