严寒地区高铁隧道衬砌挂冰机制及预测预警  被引量:5

Ice Hanging Mechanism and Early Warning in High-speed Railway Tunnels in Severe Cold Area

在线阅读下载全文

作  者:许鹏 伍毅敏[2] 张涛 傅鹤林[2] 邵帅 XU Peng;WU Yimin;ZHANG Tao;FU Helin;SHAO Shuai(School of Civil and Hydraulic Engineering,Ningxia University,Yinchuan 750021,China;School of Civil Engineering,Central South University,Changsha 410075,China;China Railway Harbin Group Co.,Ltd.,Harbin 150006,China)

机构地区:[1]宁夏大学土木与水利工程学院,宁夏银川750021 [2]中南大学土木工程学院,湖南长沙410075 [3]中国铁路哈尔滨局集团有限公司,黑龙江哈尔滨150006

出  处:《铁道学报》2023年第6期169-174,共6页Journal of the China Railway Society

基  金:国家自然科学基金(51478473);中国铁路总公司科技研究开发计划(K2018G019)。

摘  要:为减少长大寒区铁路隧道冬季挂冰巡检的工作量,为人工打冰提供指导,基于隧道挂冰模拟试验,得到隧道挂冰生长发育程度模型,构建隧道衬砌挂冰预测预警系统,通过预测隧道洞内挂冰范围及发育程度为打冰提供指导。冰挂模拟试验表明:隧道内存在结冰、无冰区域的明显划分,划分界限为-5℃;隧道衬砌冰挂生长发育存在最适宜温度区间,当洞内气温高于此温度区间时,由渗水点流出的地下水受其自身热量作用,冰挂的生长受限,当洞内气温低于此温度时,水体在流经混凝土裂缝时,热量迅速散失,导致渗水点被冻结,冰挂无法生长;得到各个渗漏水流量条件下,冰挂生长发育程度模型。基于物联网和智能温度记录仪获得隧道实时温度分布,结合隧道洞内渗漏水病害分布及流量,以隧道挂冰生长发育程度模型为核心,分析得到隧道挂冰区段及挂冰严重程度,为隧道挂冰巡检提出指导。相比于全隧道步行巡检,采用挂冰预测预警系统可以减少1/3的巡检工作量。In order to reduce the workload of winter ice hanging inspection of long high-speed railway tunnels in cold regions and provide guidance for manual deicing,based on the tunnel ice hanging simulation test,the growth and development model of tunnel ice hanging was obtained,and the tunnel lining ice hanging prediction and early warning system was established,which provides guidance for deicing by predicting the range and development degree of tunnel ice hanging.The ice hanging simulation test shows that a clear division exists between icing area and non-icing area in the tunnel,with a boundary of the division of-5℃.There is an optimum temperature range for the growth and development of hanging ice on tunnel lining.When the temperature in the tunnel is higher than this temperature range,the groundwater flowing from the water seepage points,affected by its own heat,limits the growth of ice hanging.When the temperature in the tunnel is lower than this temperature,the heat is rapidly lost when the water flows through the concrete pores,resulting in the freezing of the water seepage points,and the inability of ice to grow.The growth and development model of hanging ice was obtained under the condition of each leakage water flow.Based on the Internet of Things and intelligent temperature recorder,the real-time temperature distribution of the tunnel was obtained.Combined with the leakage distribution and volume in the tunnel,the ice hanging section and ice hanging severity of the tunnel were obtained by analyzing the ice hanging growth model embedded in the system,which provides guidance for the inspection of ice hanging in the tunnel.Compared with walking inspections throughout the tunnel,the ice hanging prediction and early warning system can reduce 1/3 inspection workload.

关 键 词:高速铁路 寒区隧道 挂冰 挂冰预警 物联网 

分 类 号:TU575[建筑科学—建筑技术科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象