单神经元控制器在剥锌机主剥离过程控制的应用研究  被引量:1

Application research of single neuron controller in the main stripping process control of zinc stripping machine

在线阅读下载全文

作  者:李强 范凌霄 刘利敏 苏勇 LI Qiang;FAN Lingxiao;LIU Limin;SU Yong(BGRIMM Technology Group,Beijing 100160,China;BGRIMM Machinery and Automation Technology Co.,Ltd.,Beijing 100160,China)

机构地区:[1]矿冶科技集团有限公司,北京100160 [2]北矿机电科技有限责任公司,北京100160

出  处:《中国矿业》2023年第S01期267-271,共5页China Mining Magazine

摘  要:国产剥锌机主剥离单元的执行机构属于非对称液压缸,采用比例阀进行控制,由于非对称液压缸活塞两边的面积不同,当液压控制系统变更动作方向时,往往容易发生一定的不稳定性,比如液压力突跳或系统振动,而且双向动作具有一定的动态不对称性,这些问题对于剥锌机主剥离单元控制系统的动态性能存在负面影响,引起剥离过程不稳定。单神经元是构成神经网络的基本单位,具有神经网络所具有的自学习和自适应能,而且结构简单易于计算、抗干扰能力强,故将其应用于剥锌机主剥离单元控制系统中,可以克服非对称液压缸的影响,提高剥锌机主剥离单元的动态性能。The executive mechanism of the main stripping unit of the domestic zinc stripping machine belongs to an asymmetric hydraulic cylinder,which is controlled by a proportional valve.Due to the different areas on both sides of the asymmetric hydraulic cylinder piston,when the hydraulic control system changes the direction of action,it is often prone to certain instability,such as sudden hydraulic pressure jump or system vibration,and the bidirectional action has a certain degree of dynamic asymmetry.These issues have a negative impact on the dynamic performance of the main stripping unit control system of the zinc stripping machine,causing instability in the stripping process.Single neuron is the basic unit that constitutes a neural network,which has the self-learning and adaptive capabilities of neural networks.Its structure is simple,easy to calculate,and has strong anti-interference ability.Therefore,when applied to the control system of the main stripping unit of a zinc stripping machine,it can overcome the influence of asymmetric hydraulic cylinders and improve the dynamic performance of the main stripping unit of the zinc stripping machine.

关 键 词:自动剥锌机 液压缸 单神经元控制器 PID 仿真 

分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象