检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:宋伟[1] SONG Wei(School of Philosophy,Hubei University,Wuhan,Hubei430062,China)
出 处:《贵州工程应用技术学院学报》2023年第2期57-64,共8页Journal of Guizhou University Of Engineering Science
摘 要:在有关Łukasiewicz命题演算形式系统的公理独立性证明中,一种常见的做法是直接运用模型论的方法构造出若干三值模型来表明各公理的独立性。不过,这种做法既没有详细解释构造这些三值模型的原因和依据,也没有系统说明构造这些三值模型的过程和方法。实际上,一种直观而自然的思考进路完全可以弥补上述做法的不足。Among the known proofs of independence of axioms in so-calledŁukasiewicz’s formal system for propositional calculus,a common way is by the model-theoretic method to construct several of three-value models which can present the independence of different axioms.The common way,however,doesn’t adequately investigate the reasons and the grounds by which those three-value models come to happen,and doesn’tsystematically explain the processes and the methods by which those three-value models come to be constructed,either.As a matter of fact,a kind of natural and intuitive thinking approach can completely rule out the defects of the common way.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.74.140