检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘卫光 刘东 王璐[2] LIU Weiguang;LIU Dong;WANG Lu(School of Software,Zhongyuan University of Technology,Zhengzhou 450000,China;School of Computer,Zhongyuan University of Technology,Zhengzhou 451100,China)
机构地区:[1]中原工学院软件学院,郑州450000 [2]中原工学院计算机学院,郑州451100
出 处:《计算机科学与探索》2023年第7期1549-1564,共16页Journal of Frontiers of Computer Science and Technology
基 金:国家自然科学基金(61772020)。
摘 要:近年来,随着深度学习的快速发展,可变形卷积网络因其强大的特征提取能力受到广泛关注,克服了卷积神经网络中难以解决的一些问题,并且已在计算机视觉、自然语言处理等相关领域发挥重要作用。由于目前对可变形卷积网络进行系统性总结的研究还很少,为了给后续研究提供详细的参考依据,对可变形卷积网络引入以来的相关工作进行总结。首先,综述了近几年的高质量文献,从不变性特征的角度入手,对可变形卷积网络中的可变形卷积和可变形感兴趣区域池化等核心技术进行介绍。然后,将收集到的相关文献按照研究领域的不同进行分类,全面概括现阶段可变形卷积网络在图像识别和分类、目标检测、图像分割、目标追踪等研究领域的应用情况,同时还对比了重要网络模型的性能和优缺点。其次,通过梳理文献,分析可变形卷积网络存在的优势和不足,并根据现阶段存在的一些问题,探讨可变形卷积网络未来可能的研究趋势。最后,基于不变性特征的提取对可变形卷积网络进行了总结和展望。In recent years,with the rapid development of deep learning,deformable convolutional networks have received extensive attention because of their powerful feature extraction capabilities,overcoming some problems that are difficult to solve in convolutional neural networks,and have played an important role in computer vision,natural language processing and other related fields.Since there is a little research on systematic summary of the deformable convolutional network,in order to provide a detailed reference for subsequent research,this paper summarizes the related work since the introduction of the deformable convolutional network.Firstly,this paper reviews the high-quality literature in recent years,and introduces the core technologies such as deformable convolution and deformable region of interest pooling in deformable convolutional networks from the perspective of invariant features.Secondly,the collected relevant literature is classified according to different research fields,and the application of deformable convolutional networks in image recognition and classification,target detection,image segmentation,target tracking and other research fields is comprehensively summarized.At the same time,the performance,advantages and disadvantages of important network models are listed.Thirdly,by combing the literature,the advantages and disadvantages of the deformable convolutional network are analyzed,and the possible future research trends of the deformable convolutional network are discussed according to some problems existing at the present stage.Finally,the deformable convolutional networks are summarized and prospected based on invariant feature extraction.
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.70