检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:傅一笑 王雨[1,2] 花家嘉[2,3] 陈雪娇 刘姝 郜天翔 FU Yixiao;WANG Yu;HUA Jiajia;CHEN Xuejiao;LIU Shu;GAO Tianxiang(School of Earth and Space Sciences,University of Science and Technology of China,Hefei 230026;Xiong'an Key Laboratory of Atmospheric Boundary Layer of China Meteorological Administration,Xiong'an 071799;Xiong'an New Area Meteorological office of Hebei Province,Xiong'an 071799)
机构地区:[1]中国科学技术大学地球和空间科学学院,合肥230026 [2]中国气象局雄安大气边界层重点开放实验室,雄安071799 [3]河北省雄安新区气象局,雄安071799
出 处:《暴雨灾害》2023年第3期324-333,共10页Torrential Rain and Disasters
基 金:国家自然科学基金项目(41875024,42075124);科技部重点研发计划项目(2022YFC3104303);唐山市科技计划项目(19150261E)。
摘 要:模式后处理方法能提高定量降水预报精度,现有的基于统计的降水后处理方法多用于订正降水率或估计降水概率,忽略了降水落区预报的空间误差,导致订正效果不佳。本文提出了一种新的基于雨团匹配的空间后处理方法,用于订正降水落区预报的空间误差,从而提高预报准确率。该方法基于雨团的识别与拆分,结合贝叶斯多目标追踪法对当前时次的模式预报和实况雨团进行匹配,从而得到模式预报数据相较于实况存在的位移与强度误差,并将该误差用于随后时次模式预报数据的订正。利用该方法,对华北地区2018—2019年夏季降水过程的ECMWF集合预报系统的降水预报产品进行订正。以CMPAS中国逐小时降水分析数据作为实况值的检验结果表明,经过该方法订正后,随后时次模式降水预报的平均TS评分从0.333提高到0.369,相关系数从0.260提升到0.327,平均绝对偏差从2.788mm降到2.541mm,表明本方法能有效提高降水预报的准确率。Modeling postprocessing methods can improve the accuracy of quantitative precipitation forecasts.At present,postprocessing methods for precipitation based on statistical analysis are mainly used to correct the precipitation rates or to estimate the precipitation proba-bility.It usually ignores the spatial displacement errors of the precipitation area forecast,thus resulting in low forecast scores.In this study,a new spatial postprocessing method based on rain cluster matching is developed to correct the spatial errors of the precipitation area forecast,in order to improve the forecasting accuracy.With the identification and separation of rain clusters,this method applies the Bayesian multi-objective tracking approach and compares the model forecasting and observed rain clusters at the current time window,so as to obtain the displacement and intensity errors between the model forecasting results and the observations.Finally,these discrepancies are used to cor-rect the model output in the coming time window.With the method proposed in this study,the precipitation forecast based on ECMWF en-semble predication system for summer precipitation processes during 2018—2019 in North China are corrected and tested.Using the CMPAS hourly precipitation analysis dataset as observations,the test results show that,after correction,the mean TS score of the precipita-tion forecasts at coming time window increases from 0.333 to 0.369,with the correlation coefficient increasing from 0.260 to 0.327,and the mean absolute error decreasing from 2.788 mm to 2.541 mm.We suggest that the method proposed in this study can effectively improve the accuracy of precipitation forecasts.
分 类 号:P426.6[天文地球—大气科学及气象学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49