基于Kriging算法与PSO算法的桁架机器人横梁模块智能优化设计方法  被引量:4

Intelligent Optimization Design Method of Beam Module of Truss Robot Based on Kriging Algorithm and PSO Algorithm

在线阅读下载全文

作  者:侯赓舜 徐永利[2,3] 徐志刚[2,3] 王军义[2,3] 杨啸 HOU Geng-shun;XU Yong-li;XU Zhi-gang;WANG Jun-yi;YANG Xiao(School of Mechanical and Electrical Engineering,Shenyang Aerospace University,Shenyang 110135,China;State Key Laboratory of Robotics,Shenyang Institute of Automation,Chinese Academy of Science,Shenyang 110016,China;Innovation Institute of Robotics and Intelligent Manufacturing,Chinese Academy of Sciences,Shenyang 110169,China)

机构地区:[1]沈阳航空航天大学机电工程学院,沈阳110135 [2]中国科学院沈阳自动化研究所机器人学国家重点实验室,沈阳110016 [3]中国科学院机器人与智能制造创新研究院,沈阳110169

出  处:《科学技术与工程》2023年第18期7758-7763,共6页Science Technology and Engineering

基  金:中央引导地方科技发展资金(2022JH6/100100014)。

摘  要:桁架机器人搬运能力强、操作方便、定位精度高,在制造业中具有极其重要的作用。针对桁架机器人自重大而导致的运行稳定性较差和材料冗余等问题进行结构优化设计研究。目前桁架机器人的结构优化设计研究有限元仿真调用次数多,时间损耗大,优化效率低。针对此问题,在分析了桁架机器人横梁部件尺寸、负载与应力、形变之间的关系后,提出了一种基于Kriging模型与PSO粒子群算法的结构优化设计方法,可以有效减少有限元仿真的调用次数,节约时间,提高优化设计效率。Truss robot has strong handling ability,convenient operation and high positioning accuracy,and plays an extremely important role in the manufacturing industry.Aiming at the problems of poor operation stability and material redundancy caused by the self-weight of the truss robot,the structural optimization design was studied.At present,the structure optimization design of truss robots has a large number of finite element simulation calls,large time loss,and low optimization efficiency.In order to solve this problem,after analyzing the relationship between size,load,stress and deformation of truss robot beam components,a structural optimization design method based on Kriging model and PSO particle swarm algorithm was proposed,which can effectively reduce the number of finite,element simulation calls,save time and improve the optimization design efficiency.

关 键 词:优化设计 粒子群算法 Kriging代理模型 桁架机器人 

分 类 号:TH246[机械工程—机械制造及自动化] TH248

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象