基于经验模态分解的城市快速路车辆速度估计方法  

Vehicle Speed Estimation Method for Urban Freeway Based on Empirical Mode Decomposition

在线阅读下载全文

作  者:张远民 蒋军君 张翔 李树彬[3] ZHANG Yuanmin;JIANG Junjun;ZHANG Xiang;LI Shubin(China Unicom(Sichuan)Industrial Internet Co.,Ltd.,Chengdu 610037 China;School of Energy and Power Engineering,Xihua University,Chengdu 610039 China;Shandong Policy College,Jinan 250014 China)

机构地区:[1]联通(四川)产业互联网有限公司,四川成都600037 [2]西华大学能源与动力工程学院,四川成都610039 [3]山东警察学院,山东济南250014

出  处:《西华大学学报(自然科学版)》2023年第4期16-24,共9页Journal of Xihua University:Natural Science Edition

基  金:国家自然科学面上基金项目(71871130)。

摘  要:城市快速路交通是典型的非线性、时变系统。针对城市快速路交通流参数估计问题,基于实测道路交通流数据提出一种新的车辆速度估计方法。首先对实测交通流数据进行预处理;然后对其进行经验模态分解与重构,建立训练数据集,基于神经网络算法,构建车辆速度与密度之间的非解析模型,实现速度的估计与预测;最后采用北京市三环路实测交通流数据对算法进行测试,分析数据预处理和经验模态分解对车辆速度估计结果的影响。结果显示本文所提方法的交通流速度参数估计均方根误差为3.41,皮尔逊相关系数为0.87,比BP神经网络方法具有更高的精度。Urban freeway traffic is a typical nonlinear,time-varying system.Aimed at the problem of estimation traffic flow parameters of urban freeway,a novel vehicle speed estimation method is proposed based on measured traffic flow data.Firstly,the measured traffic flow data are preprocessed.Then,the empirical mode decomposition and reconstruction are carried out to establish the training data set.Finally,based on the neural network algorithm,the non-analytical model between vehicle speed and density is established to realize the speed estimation and prediction.In order to verify the effectiveness of the proposed method and analyze the influence of data preprocessing and empirical modal decomposition on vehicle speed prediction results,and the measured traffic flow data of Beijing third Ring Road are used to test the algorithm.The results show that,traffic flow velocity parameter estimation root mean square error of the proposed method is 3.41,and the Pearson correlation coefficient is 0.87.Compared with BP neural network methods,the method proposed in this paper has higher accuracy for estimating road traffic flow speed.

关 键 词:城市交通 预处理 车辆速度估计 经验模态分解 神经网络 

分 类 号:U491[交通运输工程—交通运输规划与管理] TP183[交通运输工程—道路与铁道工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象