检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈金淑[1] 唐玉玲 CHEN Jinshu;TANG Yuling(School of Science,Lanzhou University of Technology,Lanzhou,730050,China;School of Mathematics and Statistics,Hexi University,Zhangye,734000,China)
机构地区:[1]兰州理工大学理学院,兰州730050 [2]河西学院数学与统计学院,张掖734000
出 处:《应用概率统计》2023年第3期436-448,共13页Chinese Journal of Applied Probability and Statistics
基 金:国家自然科学基金项目(批准号:12161050)资助.
摘 要:设M是一个具有混沌表示性质的离散时间正规鞅,φ(M)■L2(M)■φ*(M)是基于M泛函的Gel’fand三元组.从φ(M)到φ*(M)的连续线性算子可称为M泛函上的广义算子,以φ表示此类算子的全体.本文的主要目的在于建立φ值函数关于φ值测度的积分运算.为此,本文首先讨论φ值测度的基本性质,在此基础上定义了φ值函数关于φ值测度在卷积意义下的Bochner积分,并建立了相应的控制收敛定理和卷积意义下的Fubini定理.Let M be a discrete-time normal martingale satisfying some mild conditions,■(M)■L2(M)■(M)be the Gel'fand triple constructed from the functionals of M.L denote the space of continuous linear operators from the testing functional space ■(M)to the generalized functional space ■(M).As is known,the usual product in L may not make sense.However,by using the 2D-Fock transform,one can introduce convolution in L,then one can try to introduce a Bochner-style integral for L-valued functions with respect to L-valued measures in the sense of convolution.This paper just studies such a type of integral.First,a class of L-valued measures are introduced and their basic properties are examined.Then,an integral of an L-valued function with respect to an L-valued measure is de ned and a dominated convergence theorem is established for this integral.Finally,a convolution measure of two L-valued measures is also discussed and a Fubini type theorem is proved for this integral.
关 键 词:离散时间正规鞅 BOCHNER积分 算子值测度 FUBINI定理
分 类 号:O211.6[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15