检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:彭心睿 潘晴[1] 田妮莉[1] PENG Xinrui;PAN Qing;TIAN Nili(College of Information Engineering,Guangdong University of Technology,Guangzhou 510006,China)
出 处:《计算机工程与应用》2023年第14期224-231,共8页Computer Engineering and Applications
基 金:国家自然科学基金(61901123)。
摘 要:为了对新型冠状病毒引发的肺炎胸部X光(chest X-Ray,CXR)图像进行准确且快速的识别,提出了一种基于加权通道筛选(weighted channel filter,WCF)的轻量级模型WCF-MobileNetV3。将轻量级的MobileNetV3-small作为主干网络,并针对CXR图像样本类间差异小、难以提取区分性特征的问题,提出了WCF模块。提取输入特征图的高维与低维通道特征权重;采取加权随机抽样的方式生成高维与低维特征通道掩膜,将高维、低维的权重融合,并利用掩膜对融合后的权重进行通道筛选;将权重赋给输入特征图,实现通道特征增强。在Chest-X-Ray Image与COVID-19 Chest X-Ray Image Repository数据集上进行了实验,结果表明:WCF-MobileNetV3对新冠肺炎CXR图像识别的准确率、精确率、灵敏度分别为97.93%、98.64%、97.19%。与其他新冠肺炎识别算法相比,WCF-MobileNetV3能够准确且高效地识别新冠肺炎CXR图像,具有更好的识别性能。To identify COVID-19 chest X-Ray(CXR)images accurately and quickly,a lightweight model WCF-MobileNetV3 based on weighted channel filter(WCF)is proposed.The model uses MobileNetV3-small as the backbone network.Aiming at the problem that the difference between CXR image samples is small and it is difficult to extract distinguishing features,the WCF module is proposed.First,it extracts the weights of the high-dimensional and low-dimensional channel features from the input feature map.And then,it generates the high-dimensional and low-dimensional feature channel masks by weighted random sampling and fuses the weights.Next,it uses the masks to filter the fused weights.Finally,it assigns the weights to the input feature map to achieve channel-wise feature enhancement.The experimental results on the Chest-X-Ray Image dataset and the COVID-19 Chest X-Ray Image Repository dataset show that the accuracy,precision,and sensitivity of WCF-MobileNeteV3 for COVID-19 recognition are 97.93%,98.64%,and 97.19%,respectively.Compared with other COVID-19 identification algorithms,WCF-MobileNetV3 can identify COVID-19 CXR images accurately and efficiently with better recognition performance.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7