激励机制下考虑故障车回收的共享单车调度  被引量:2

Shared Bicycle Dispatching Considering Faulty Bicycle Recovery Under Incentive Mechanism

在线阅读下载全文

作  者:吴凡[1,2] 汪澜 许振兴 WU Fan;WANG Lan;XU Zhenxing(College of Management Science and Engineering,Anhui University of Technology,Maanshan 243000,China;Jiangsu Giansun Precision Technology Group.Co.,Ltd,WuXi 214423,China;Anhui Taier Heavy Industry Co.,Ltd.Maanshan 243000,China)

机构地区:[1]安徽工业大学管理科学与工程学院,安徽马鞍山243000 [2]江苏江顺精密科技集团股份有限公司,江苏无锡214423 [3]泰尔重工股份有限公司,安徽马鞍山243000

出  处:《综合运输》2023年第6期82-87,111,共7页China Transportation Review

基  金:国家自然科学基金项目(61702006)。

摘  要:近年来,共享单车已逐渐成为城市公共交通工具中重要的一部分,在很大程度上改善了“最后一公里”的问题。但诸多需要共享单车运营企业解决的问题也随之而来,例如,故障共享单车的回收及各站点之间单车数量的调度。针对这一问题,以调度总成本最小为优化目标构建了优化调度模型,其中考虑了对用户的激励机制,使用户在使用共享单车的同时参与单车的调度工作。并针对这一模型,提出了一种自适应混合扰动机制粒子群算法,其在一定程度上克服了传统粒子群算法全局搜索能力较弱的问题。仿真结果表明:改进后的算法较之原始粒子群算法能够更好地处理这一问题;在使用激励机制的情况下,能够有效降低共享单车企业的运营成本。In recent years, bicycle sharing has gradually become an important part of urban public transportation, improving the "last mile" problem to a large extent. However, there are many problems that need to be solved by bicycle sharing operators, i.e., the recovery of faulty bicycles and the scheduling of the number of bicycles between stations. To address this problem, an optimal scheduling model is constructed with the objective of minimizing the total cost of scheduling, in which the incentive mechanism for users is considered, so that they can participate in the scheduling of bicycles while using the shared bicycles. And for this model, an adaptive hybrid perturbation mechanism particle swarm algorithm is proposed, which overcomes the problem of weak global search ability of traditional particle swarm algorithm to a certain extent.The simulation results show that the improved algorithm can handle this problem better than the original particle swarm algorithm;it can effectively reduce the operation cost of bike-sharing enterprises under the use of incentive mechanism.

关 键 词:共享单车 故障车回收 激励机制 粒子群算法 

分 类 号:U492.22[交通运输工程—交通运输规划与管理] TP18[交通运输工程—道路与铁道工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象