检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:薛安克[1] 毛克成 张乐[1] XUE Anke;MAO Kecheng;ZHANG Le(Schlool of Automation,Hangzhou Dianzi University,Hangzhou 310018,China)
机构地区:[1]杭州电子科技大学自动化学院,杭州310018
出 处:《电子与信息学报》2023年第7期2528-2536,共9页Journal of Electronics & Information Technology
摘 要:模式识别技术已经广泛应用于海上目标检测,其中二分类的模式识别算法在处理该问题时会面临类别非均衡的困境。传统方法一般通过添加人工仿真目标回波扩充目标数据集,检测结果容易受到仿真精度的影响,且增加算法的复杂度。该文提出一种基于多分类思想的多特征海上小目标智能检测方法,先对海杂波数据与目标数据进行多维特征提取,构建高维特征空间;再基于多分类思想中的“1对1”方法,将海杂波特征空间划分成多个子空间,每个杂波子空间与目标数据特征空间等大,构造多个二分类器进行联合判决。该文选取的二分类器为改进的双参数K近邻(K-NN)算法,可有效调节虚警率。经冰多参数成像X波段雷达(IPIX)数据集验证,所提方法在观测时间为1.024 s时获得了82.40%的检测概率,与基于K-NN的检测器做比较,获得了2%的性能提升。The pattern recognition technology have been widely used in target detection within sea clutter,and the binary pattern recognition algorithm will face the dilemma of catgory disequilibrium when dealing with this problem.The traditional method expands the target data set by adding artificial simulated target echoes,however,the detection result is easily affected by the accuracy of simulation data,and the complexity of the algorithm increases.In this paper,a multi-feature intelligent detection method for small targets within sea clutter based on multi-class classifier is proposed.Firstly,multi-dimensional features are extracted from sea clutter and target data to construct a high-dimensional feature space.Then,based on the“one to one”method of multi-class classification,the sea clutter feature space is divided into multiple subspaces,which is as large as the target data feature space to biuld multiple binary classifiers for joint decision.The binary classifier selected in this paper is the improved two-parameter K-Nearest Neighbor(K-NN)algorithm,which can effectively adjust the false alarm rate.Verified by Ice MultiParameter Imaging X-band radar(IPIX)radar data set,the detection probability of the proposed method is 82.40%when the observation time is 1.024 s,and the performance of the proposed method is improved by 2%compared with the existing feature detectors of the same type.
关 键 词:海杂波 小目标检测 多分类 双参数寻优K近邻(K-NN)算法 可控虚警
分 类 号:TN957.51[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249