检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郑浩鑫 陈志聪 吴丽君 林培杰 程树英 ZHENG Haoxin;CHEN Zhicong;WU Lijun;LIN Peijie;CHENG Shuying(Institute of Micro-Nano Devices and Solar Cells,College of Physics and Information Engineering,Fuzhou University,Fuzhou,Fujian 350108,China)
机构地区:[1]福州大学物理与信息工程学院,微纳器件与太阳能电池研究所,福建福州350108
出 处:《福州大学学报(自然科学版)》2023年第4期475-481,共7页Journal of Fuzhou University(Natural Science Edition)
基 金:国家自然科学基金面上资助项目(62271151);福建省自然科学基金面上资助项目(2021J01580)。
摘 要:针对不同类型的枪击加速度信号,采用深度学习的方法,提出一种新的兼顾精度和轻量化的时间序列(ENT)模型进行研究.该架构核心由注意力倒置残差模块与倒置残差模块组成,能够自动提取枪击加速度信号特征,对不同输入时间尺度更具鲁棒性.在识别精确率方面达到97.42%,超越传统枪击识别算法,在公开枪击数据集上与SVM、决策树、随机森林3种传统机器学习模型,以及FCN、ResNet、Inceptiontime、Xceptiontime等4种时间序列深度学习模型对比.实验结果表明:ENT模型更加高效,识别精确率更高.In contrast to the conventional method,this research employs for the first time a deep learning strategy to examine various types of gunshot acceleration signals.A novel time series classification model called EfficientNettime has been proposed,capable of balancing recognition accuracy and model lightweight.The core of this architecture is composed of MBConvtime and Fused-MBConvtime modules,which can automatically extract the characteristics of gunshot acceleration signals and are more robust to different input time scales.The proposed model is verified and compared with three conventional machine learning models(SVM,Decision Tree,and Random Forest)and four other deep learning time series models(FCN,ResNet,Inceptiontime,and Xceptiontime),using a publicly available gunshot dataset.The experimental results show that the recognition precision of EfficientNettime model reaches 97.42%beyond the traditional gunshot recognition algorithm,and the model is more efficient and has higher recognition precision.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.43