检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘全仲 李良群 LIU Quanzhong;LI Liangqun(ATR Key Laboratory,Shenzhen University,Shenzhen 518060,China;China Great Wall Technology Group Co.,Ltd,Shenzhen 518057,China)
机构地区:[1]深圳大学ATR国防科技重点实验室,广东深圳518060 [2]中国长城科技集团有限公司,广东深圳518057
出 处:《火力与指挥控制》2023年第6期14-18,共5页Fire Control & Command Control
基 金:国家自然科学基金(62171287);国防预研基础研究基金资助项目(6778539)。
摘 要:针对密集杂波环境下的多目标跟踪问题,提出了一种基于可能性聚类的联合概率数据关联滤波算法。在提出算法中,分析了传统FCM数据关联算法在噪声抑制方面的不足;利用可能性聚类能够有效抑制噪声的优势,同时结合多目标跟踪中,聚类中心应该在目标预测位置或者在其附近的特点,提出了一种以目标预测位置为约束条件的可能性聚类新目标函数,通过对目标函数进行优化得到目标观测的数据关联矩阵,有效减少由杂波引起的错误关联,实现对多目标与观测的准确关联。实验结果表明,提出的方法能够有效解决多目标与观测的关联问题,关联准确率要高于传统的Fitzgerald’JPDAF、MEF-JPDAF算法和IF-JPDAF算法。According to multiple target tracking problem in dense clutter environment,a new joint probabilistic data association filter based on probabilistic clustering is proposed(PC-JPDAF).In the proposed algorithm,firstly,the shortcomings of traditional FCM data association algorithm in noise suppression are analyzed;the probabilistic clustering is used to effectively suppress noise,and the characteristics that the clustering center should be at or near the target prediction position in multi-target tracking is combined,a new probabilistic clustering objective function with the target predicted states as the constraint condition is proposed.By optimizing the objective function,the data association matrix of observed and measured targets can be obtained,which can effectively reduce the incorrect associations caused by clutter and can realize the accurate correlation between multi-target and observation and measurement.The experimental results show that the proposed method can effectively solve the association problem between multi-targets and observation and measurement,and the association accuracy is higher than that of traditional Fitzgerald fuzzy joint probabilistic data association filter(Fitzgerald’JPDAF),maximum entropy JPDAF(MEF-JPDAF)and IF-JPDAF(intuitionistic fuzzy JPDAF)algorithm.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.216.93.197